Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions

The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2019, Vol.25 (1), p.17-27
1. Verfasser: Mahmudov, Elimhan N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 17
container_title Journal of dynamical and control systems
container_volume 25
creator Mahmudov, Elimhan N.
description The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of high-order derivatives of searched functions. The sufficient conditions, containing both the Euler-Lagrange and Hamiltonian type inclusions and “transversality” conditions at the endpoints t = − 1, 0 and t = 1 are derived. One of the key features in the proof of sufficient conditions is the notion of locally adjoint mappings. Then, we demonstrate how these conditions can be transformed into Pontryagin’s maximum principle in some particular cases.
doi_str_mv 10.1007/s10883-017-9392-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2162519331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162519331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8ed3950134794ced6df8f9b1f81e553943d8d37f95f77fa5f7d54eb5f9ba95e13</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHckrlEYhgGWWn_apEldqHFH6HCp00yHCjMLfXppxsSVGy6L83039yB0yeg1o1TeJEaV4oQySTTXBRFHaMKE5ERVWh3nP5WaFLIoT9FZSltKqVZcTdD7at83u-bb9k3ocPD4Lgyds_ELv9l2APwcw7qFXcI-RDyD2Numw_Nm8wGRrKKDiO8b7yFC1ze2xYuuboeUq9I5OvG2TXDxO6fo9fHhZTYny9XTYna7JHVRqZ4ocFwLyngpdVmDq5xXXq-ZVwyE4LrkTjkuvRZeSm_z60QJa5EZqwUwPkVXY-8-hs8BUm-2YYhdXmkKVhWCac4PFBupOoaUInizj80un2kYNQeBZhRoskBzEGhEzhRjJmW220D8a_4_9AOqBHQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162519331</pqid></control><display><type>article</type><title>Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions</title><source>SpringerLink Journals</source><creator>Mahmudov, Elimhan N.</creator><creatorcontrib>Mahmudov, Elimhan N.</creatorcontrib><description>The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of high-order derivatives of searched functions. The sufficient conditions, containing both the Euler-Lagrange and Hamiltonian type inclusions and “transversality” conditions at the endpoints t = − 1, 0 and t = 1 are derived. One of the key features in the proof of sufficient conditions is the notion of locally adjoint mappings. Then, we demonstrate how these conditions can be transformed into Pontryagin’s maximum principle in some particular cases.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-017-9392-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary value problems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Control theory ; Differential equations ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Economic models ; Functionals ; Inclusions ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Operators (mathematics) ; Optimal control ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2019, Vol.25 (1), p.17-27</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8ed3950134794ced6df8f9b1f81e553943d8d37f95f77fa5f7d54eb5f9ba95e13</cites><orcidid>0000-0003-2879-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-017-9392-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-017-9392-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mahmudov, Elimhan N.</creatorcontrib><title>Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of high-order derivatives of searched functions. The sufficient conditions, containing both the Euler-Lagrange and Hamiltonian type inclusions and “transversality” conditions at the endpoints t = − 1, 0 and t = 1 are derived. One of the key features in the proof of sufficient conditions is the notion of locally adjoint mappings. Then, we demonstrate how these conditions can be transformed into Pontryagin’s maximum principle in some particular cases.</description><subject>Boundary value problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Economic models</subject><subject>Functionals</subject><subject>Inclusions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEURonRxFp9AHckrlEYhgGWWn_apEldqHFH6HCp00yHCjMLfXppxsSVGy6L83039yB0yeg1o1TeJEaV4oQySTTXBRFHaMKE5ERVWh3nP5WaFLIoT9FZSltKqVZcTdD7at83u-bb9k3ocPD4Lgyds_ELv9l2APwcw7qFXcI-RDyD2Numw_Nm8wGRrKKDiO8b7yFC1ze2xYuuboeUq9I5OvG2TXDxO6fo9fHhZTYny9XTYna7JHVRqZ4ocFwLyngpdVmDq5xXXq-ZVwyE4LrkTjkuvRZeSm_z60QJa5EZqwUwPkVXY-8-hs8BUm-2YYhdXmkKVhWCac4PFBupOoaUInizj80un2kYNQeBZhRoskBzEGhEzhRjJmW220D8a_4_9AOqBHQE</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Mahmudov, Elimhan N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2879-6154</orcidid></search><sort><creationdate>2019</creationdate><title>Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions</title><author>Mahmudov, Elimhan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8ed3950134794ced6df8f9b1f81e553943d8d37f95f77fa5f7d54eb5f9ba95e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Economic models</topic><topic>Functionals</topic><topic>Inclusions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmudov, Elimhan N.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmudov, Elimhan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2019</date><risdate>2019</risdate><volume>25</volume><issue>1</issue><spage>17</spage><epage>27</epage><pages>17-27</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of high-order derivatives of searched functions. The sufficient conditions, containing both the Euler-Lagrange and Hamiltonian type inclusions and “transversality” conditions at the endpoints t = − 1, 0 and t = 1 are derived. One of the key features in the proof of sufficient conditions is the notion of locally adjoint mappings. Then, we demonstrate how these conditions can be transformed into Pontryagin’s maximum principle in some particular cases.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-017-9392-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2879-6154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2019, Vol.25 (1), p.17-27
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_journals_2162519331
source SpringerLink Journals
subjects Boundary value problems
Calculus of Variations and Optimal Control
Optimization
Control
Control theory
Differential equations
Dynamical Systems
Dynamical Systems and Ergodic Theory
Economic models
Functionals
Inclusions
Mathematics
Mathematics and Statistics
Maximum principle
Operators (mathematics)
Optimal control
Systems Theory
Vibration
title Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Boundary%20Value%20Problems%20for%20Certain%20Higher-Order%20Differential%20Inclusions&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Mahmudov,%20Elimhan%20N.&rft.date=2019&rft.volume=25&rft.issue=1&rft.spage=17&rft.epage=27&rft.pages=17-27&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-017-9392-5&rft_dat=%3Cproquest_cross%3E2162519331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162519331&rft_id=info:pmid/&rfr_iscdi=true