Optimization of Boundary Value Problems for Certain Higher-Order Differential Inclusions

The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2019, Vol.25 (1), p.17-27
1. Verfasser: Mahmudov, Elimhan N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper studies a new class of problems of optimal control theory with special differential inclusions described by higher-order linear differential operators (HLDOs). There arises a rather complicated problem with simultaneous determination of the HLDOs and a Mayer functional depending of high-order derivatives of searched functions. The sufficient conditions, containing both the Euler-Lagrange and Hamiltonian type inclusions and “transversality” conditions at the endpoints t = − 1, 0 and t = 1 are derived. One of the key features in the proof of sufficient conditions is the notion of locally adjoint mappings. Then, we demonstrate how these conditions can be transformed into Pontryagin’s maximum principle in some particular cases.
ISSN:1079-2724
1573-8698
DOI:10.1007/s10883-017-9392-5