Improved Combinatorial Algorithms for the Inhomogeneous Short Integer Solution Problem
The paper is about algorithms for the inhomogeneous short integer solution problem: given ( A , s ) to find a short vector x such that A x ≡ s ( mod q ) . We consider algorithms for this problem due to Camion and Patarin; Wagner; Schroeppel and Shamir; Minder and Sinclair; Howgrave–Graham and Joux (...
Gespeichert in:
Veröffentlicht in: | Journal of cryptology 2019-01, Vol.32 (1), p.35-83 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is about algorithms for the inhomogeneous short integer solution problem: given
(
A
,
s
)
to find a short vector
x
such that
A
x
≡
s
(
mod
q
)
. We consider algorithms for this problem due to Camion and Patarin; Wagner; Schroeppel and Shamir; Minder and Sinclair; Howgrave–Graham and Joux (HGJ); Becker, Coron and Joux (BCJ). Our main results include: applying the Hermite normal form (HNF) to get faster algorithms; a heuristic analysis of the HGJ and BCJ algorithms in the case of density greater than one; an improved cryptanalysis of the SWIFFT hash function; a new method that exploits symmetries to speed up algorithms for Ring-SIS in some cases. |
---|---|
ISSN: | 0933-2790 1432-1378 |
DOI: | 10.1007/s00145-018-9304-1 |