Improved Combinatorial Algorithms for the Inhomogeneous Short Integer Solution Problem

The paper is about algorithms for the inhomogeneous short integer solution problem: given ( A , s ) to find a short vector x such that A x ≡ s ( mod q ) . We consider algorithms for this problem due to Camion and Patarin; Wagner; Schroeppel and Shamir; Minder and Sinclair; Howgrave–Graham and Joux (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cryptology 2019-01, Vol.32 (1), p.35-83
Hauptverfasser: Bai, Shi, Galbraith, Steven D., Li, Liangze, Sheffield, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is about algorithms for the inhomogeneous short integer solution problem: given ( A , s ) to find a short vector x such that A x ≡ s ( mod q ) . We consider algorithms for this problem due to Camion and Patarin; Wagner; Schroeppel and Shamir; Minder and Sinclair; Howgrave–Graham and Joux (HGJ); Becker, Coron and Joux (BCJ). Our main results include: applying the Hermite normal form (HNF) to get faster algorithms; a heuristic analysis of the HGJ and BCJ algorithms in the case of density greater than one; an improved cryptanalysis of the SWIFFT hash function; a new method that exploits symmetries to speed up algorithms for Ring-SIS in some cases.
ISSN:0933-2790
1432-1378
DOI:10.1007/s00145-018-9304-1