A Nonlinear Regression Application via Machine Learning Techniques for Geomagnetic Data Reconstruction Processing

The integrity of geomagnetic data is a critical factor in understanding the evolutionary process of Earth's magnetic field, as it provides useful information for near-surface exploration, unexploded explosive ordnance detection, and so on. Aimed to reconstruct undersampled geomagnetic data, thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-01, Vol.57 (1), p.128-140
Hauptverfasser: Liu, Huan, Liu, Zheng, Liu, Shuo, Liu, Yihao, Bin, Junchi, Shi, Fang, Dong, Haobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integrity of geomagnetic data is a critical factor in understanding the evolutionary process of Earth's magnetic field, as it provides useful information for near-surface exploration, unexploded explosive ordnance detection, and so on. Aimed to reconstruct undersampled geomagnetic data, this paper presents a geomagnetic data reconstruction approach based on machine learning techniques. The traditional linear interpolation approaches are prone to time inefficiency and high labor cost, while the proposed approach has a significant improvement. In this paper, three classic machine learning models, support vector machine, random forests, and gradient boosting were built. Besides, a deep learning algorithm, recurrent neural network, was explored to further improve the training performance. The proposed learning models were used to specify a continuous regression hyperplane from a training data. The specified regression hyperplane is a mapping of the relation between the mock-up missing data and the surrounding intact data. Afterward, the trained models, essentially the hyperplanes, were used to reconstruct the missing geomagnetic traces for validation, and they can be used for reconstructing further collected new field data. Finally, numerical experiments were derived. The results showed that the performance of our methods was more competitive in comparison with the traditional linear method, as the reconstruction accuracy was increased by approximately 10%~20%.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2018.2852632