Optimal Spacecraft Rendezvous Using Genetic Algorithms
The optimal rendezvous of two spacecraft are examined using a genetic algorithm. The minimum fuel solution of the optimal rendezvous contains many local optima, as well as discontinuities in the solution. These local optima and discontinuities make locating a global optimal solution difficult. Genet...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 2002-11, Vol.39 (6), p.859-865 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimal rendezvous of two spacecraft are examined using a genetic algorithm. The minimum fuel solution of the optimal rendezvous contains many local optima, as well as discontinuities in the solution. These local optima and discontinuities make locating a global optimal solution difficult. Genetic algorithms are effective in solving these kinds of problems. The goal is to find the thrust time history that includes the magnitude and direction of the velocity change and the burn position, such that the boundary conditions are satisfied to an acceptable level and in a reasonable time. In addition, the number of thrust arcs and the maximum magnitude of the velocity change are regulated. This method was used on three test cases: 1) the Hohmann transfer, 2) the bielliptic transfer, and 3) rendezvous with two impulses. The results of the Hohmann and the bielliptic transfers match the analytical solutions within the resolution of the variables of the genetic algorithm. Although the result from the rendezvous with two impulses is not exact, the configuration of the trajectory is similar to the analytical solution. (Author) |
---|---|
ISSN: | 0022-4650 1533-6794 |
DOI: | 10.2514/2.3908 |