Influence of interplanetary trajectory selection on Earth atmospheric entry velocity of Mars missions

Many current manned Mars mission studies are using low lift-to-drag ratio vehicles to aerobrake at both Mars and Earth. This paper will demonstrate that if entry velocity constraints are incorporated into the interplanetary analysis of aerobraking Mars missions, more opportunities can be achieved fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 1993-07, Vol.30 (4), p.420-425
Hauptverfasser: Striepe, Scott A, Braun, Robert D, Powell, Richard W, Fowler, Wallace T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many current manned Mars mission studies are using low lift-to-drag ratio vehicles to aerobrake at both Mars and Earth. This paper will demonstrate that if entry velocity constraints are incorporated into the interplanetary analysis of aerobraking Mars missions, more opportunities can be achieved for only a small increase in initial mass in low-Earth orbit (IMLEO). These additional opportunities result from varying the initial launch date and the encounter dates and possibly using a powered Venus swingby on either the inbound or outbound transfer. This paper not only presents unconstrained entry velocity missions but also includes results for entry velocities below 12.5 and 14 km/s on Earth return and between 6.0-8.5 km/s at Mars arrival. The results indicate that, regardless of the Mars entry velocity range selected, an Earth entry velocity below 14 km/s is easily attainable for a minimal IMLEO increase. Although there are fewer 12.5 km/s Earth entry velocity missions possible, both Mars entry velocity constraint cases have over 50 percent of their missions requiring a negligible IMLEO increase.
ISSN:0022-4650
1533-6794
DOI:10.2514/3.25547