On the Size of Chaos in the Mean Field Dynamics

We consider the error arising from the approximation of an N -particle dynamics with its description in terms of a one-particle kinetic equation. We estimate the distance between the j -marginal of the system and the factorized state, obtained in a mean field limit as N → ∞ . Our analysis relies on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-01, Vol.231 (1), p.285-317
Hauptverfasser: Paul, Thierry, Pulvirenti, Mario, Simonella, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the error arising from the approximation of an N -particle dynamics with its description in terms of a one-particle kinetic equation. We estimate the distance between the j -marginal of the system and the factorized state, obtained in a mean field limit as N → ∞ . Our analysis relies on the evolution equation for the “correlation error” rather than on the usual BBGKY hierarchy. The rate of convergence is shown to be O ( j 2 / N ) in any bounded interval of time (size of chaos), as expected from heuristic arguments. Our formalism applies to an abstract hierarchical mean field model with bounded collision operator and a large class of initial data, covering (a) stochastic jump processes converging to the homogeneous Boltzmann and the Povzner equation and (b) quantum systems giving rise to the Hartree equation.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-018-1280-y