Asymptotic Stability of Homogeneous States in the Relativistic Dynamics of Viscous, Heat-Conductive Fluids
This paper shows global-in-time existence and asymptotic decay of small solutions to the Navier–Stokes–Fourier equations for a class of viscous, heat-conductive relativistic fluids. As this second-order system is symmetric hyperbolic, existence and uniqueness on a short time interval follow from the...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2019-01, Vol.231 (1), p.91-113 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper shows global-in-time existence and asymptotic decay of small solutions to the Navier–Stokes–Fourier equations for a class of viscous, heat-conductive relativistic fluids. As this second-order system is symmetric hyperbolic, existence and uniqueness on a short time interval follow from the work of Hughes, Kato and Marsden. In this paper it is proven that solutions which are close to a homogeneous reference state can be extended globally and decay to the reference state. The proof combines decay results for the linearization with refined Kawashima-type estimates of the nonlinear terms. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-018-1274-9 |