Asymptotic Stability of Homogeneous States in the Relativistic Dynamics of Viscous, Heat-Conductive Fluids

This paper shows global-in-time existence and asymptotic decay of small solutions to the Navier–Stokes–Fourier equations for a class of viscous, heat-conductive relativistic fluids. As this second-order system is symmetric hyperbolic, existence and uniqueness on a short time interval follow from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-01, Vol.231 (1), p.91-113
1. Verfasser: Sroczinski, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows global-in-time existence and asymptotic decay of small solutions to the Navier–Stokes–Fourier equations for a class of viscous, heat-conductive relativistic fluids. As this second-order system is symmetric hyperbolic, existence and uniqueness on a short time interval follow from the work of Hughes, Kato and Marsden. In this paper it is proven that solutions which are close to a homogeneous reference state can be extended globally and decay to the reference state. The proof combines decay results for the linearization with refined Kawashima-type estimates of the nonlinear terms.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-018-1274-9