Dehydroepiandrosterone inhibits I^sub Ca^,L and its window current in voltage-dependent and -independent mechanisms in arterial smooth muscle cells

Dehydroepiandrosterone (DHEA) is an adrenal steroid hormone, which has the highest serum concentration among steroid hormones with DHEA sulfate (DHEAS). DHEA possesses an inhibitory action on glucose-6-phosphate dehydrogenase (G6PD), the first pentose-phosphate pathway enzyme that reduces NADP+ to N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2018-12, Vol.315 (6), p.H1602
Hauptverfasser: Ochi, Rikuo, Chettimada, Sukrutha, Kizub, Igor, Gupte, Sachin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dehydroepiandrosterone (DHEA) is an adrenal steroid hormone, which has the highest serum concentration among steroid hormones with DHEA sulfate (DHEAS). DHEA possesses an inhibitory action on glucose-6-phosphate dehydrogenase (G6PD), the first pentose-phosphate pathway enzyme that reduces NADP+ to NADPH. DHEA induced relaxation of high K+-induced contraction in rat arterial strips, whereas DHEAS barely induced it. We studied the effects of DHEA on L-type Ca2+ current (ICa,L) of A7r5 arterial smooth muscle cells and compared the mechanism of inhibition with that produced by the 6-aminonicotinamide (6-AN) competitive inhibitor of G6PD. DHEA moderately inhibited ICa,L that was elicited from a holding potential (HP) of −80 mV [voltage-independent inhibition (VIDI)] and accelerated decay of ICa,L during the depolarization pulse [voltage-dependent inhibition (VDI)]. DHEA-induced VDI decreased peak ICa,L at depolarized HPs. By applying repetitive depolarization pulses from multiple HPs, novel HP-dependent steady-state inactivation curves (f∞-HP) were constructed. DHEA shifted f∞-HP to the left and inhibited the window current, which was recorded at depolarized HPs and obtained as a product of current-voltage relationship and f∞-HP. The IC50 value of ICa,L inhibition was much higher than serum concentration. DHEA-induced VDI was downregulated by the dialysis of guanosine 5′-O-(2-thiodiphosphate), which shifted f∞-voltage to the right before the application of DHEA. 6-AN gradually and irreversibly inhibited ICa,L by VIDI, suggesting that the inhibition of G6PD is involved in DHEA-induced VIDI. In 6-AN-pretreated cells, DHEA induced additional inhibition by increasing VIDI and generating VDI. The inhibition of G6PD underlies DHEA-induced VIDI, and DHEA additionally induces VDI as described for Ca2+ channel blockers.
ISSN:0363-6135
1522-1539
DOI:10.1152/ajpheart.00291.2018