Programed Assembly of Nucleoprotein Nanoparticles Using DNA and Zinc Fingers for Targeted Protein Delivery
With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-12, Vol.14 (52), p.e1802618-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double‐stranded DNA with multiple ZnF‐binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF‐fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.
Nucleoprotein nanoparticles (NNPs) are assembled through specific interactions between zinc fingers and template DNAs on gold nanoparticles for targeted protein delivery. With controlled loading of a cytotoxic protein, the NNPs show a remarkable antitumor activity in xenograft mice. The NNPs find wide applications in biological and medical sciences. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.201802618 |