On Compactness of Regular Integral Operators in the Space L 1

In this paper we obtain a sufficient condition for quite continuity of Fredholm type integral operators in the space L1(a, b). Uniform approximations by operators with degenerate kernels of horizontally striped structures are constructed. A quantitative error estimate is obtained. We point out the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contemporary mathematical analysis 2018-11, Vol.53 (6), p.317
Hauptverfasser: Yengibaryan, B N, Yengibaryan, N B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain a sufficient condition for quite continuity of Fredholm type integral operators in the space L1(a, b). Uniform approximations by operators with degenerate kernels of horizontally striped structures are constructed. A quantitative error estimate is obtained. We point out the possibility of application of the obtained results to second kind integral equations, including convolution equations on a finite interval, equations with polar kernels, one-dimensional equations with potential type kernels, and some transport equations in non-homogeneous layers.
ISSN:1068-3623
1934-9416
DOI:10.3103/S106836231806002X