On Compactness of Regular Integral Operators in the Space L 1
In this paper we obtain a sufficient condition for quite continuity of Fredholm type integral operators in the space L1(a, b). Uniform approximations by operators with degenerate kernels of horizontally striped structures are constructed. A quantitative error estimate is obtained. We point out the p...
Gespeichert in:
Veröffentlicht in: | Journal of contemporary mathematical analysis 2018-11, Vol.53 (6), p.317 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we obtain a sufficient condition for quite continuity of Fredholm type integral operators in the space L1(a, b). Uniform approximations by operators with degenerate kernels of horizontally striped structures are constructed. A quantitative error estimate is obtained. We point out the possibility of application of the obtained results to second kind integral equations, including convolution equations on a finite interval, equations with polar kernels, one-dimensional equations with potential type kernels, and some transport equations in non-homogeneous layers. |
---|---|
ISSN: | 1068-3623 1934-9416 |
DOI: | 10.3103/S106836231806002X |