Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach
Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2019-01, Vol.30 (1), p.72-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 72 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 30 |
creator | Xiang, Min Scalzo Dees, Bruno Mandic, Danilo P. |
description | Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for \mathbb {C}^{\eta } -improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated. |
doi_str_mv | 10.1109/TNNLS.2018.2829526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2159994169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8363059</ieee_id><sourcerecordid>2068343028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qVUHAHyhSZamXXrLY44-1e1tRvqQFhACVm-Ukk9Yom6R2Uol_Xy-77IG5zEh-3hn5fQn5wtmMc2ZPHm5ulvczYNzMwIBVoD-QfeAaChDGfNzN86c9cpTSM8ulmdLSfiZ7YK0Vc1D7xF1P7RiGFovrvsaWLmo_jOEf0rM0hpUfQ9_Rpo9UFD-p72oqc78Pvzvfph90QX-FLHqhy9Chj_Ru8iPGbq1ZDEPsffXnkHxqMotH235AHs_PHk4vi-XtxdXpYllUQvGxULoEo6vGC6v0XEnJFdS6kULYpkQJjZFWavRCQ2mx9GWJXtZgDZasVrYRB-T7Zm8--3fCNLpVSBW2re-wn5IDpo2QgoHJ6Ld36HM_xfWPHHCVnZFc20zBhqpin1LExg0xGxJfHGdunYB7TcCtE3DbBLLo63b1VK6w3kne_M7A8QYIiLh7NkILpqz4DwOLiC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159994169</pqid></control><display><type>article</type><title>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Min ; Scalzo Dees, Bruno ; Mandic, Danilo P.</creator><creatorcontrib>Xiang, Min ; Scalzo Dees, Bruno ; Mandic, Danilo P.</creatorcontrib><description>Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for <inline-formula> <tex-math notation="LaTeX">\mathbb {C}^{\eta } </tex-math></inline-formula>-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2829526</identifier><identifier>PMID: 29993725</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Adaptive filters ; Algorithms ; Bayesian analysis ; Computer simulation ; Estimation ; Heuristic algorithms ; Interacting multiple-model (IMM) algorithm ; Kalman filters ; multiple-model adaptive estimation (MMAE) ; Numerical models ; Performance enhancement ; quaternion Kalman filters ; quaternion noncircularity ; Quaternions ; Signal processing algorithms ; State estimation ; static multiple-model (SMM) algorithm ; Statistical analysis ; Statistical inference ; Three dimensional models ; Uncertainty ; Uncertainty analysis ; widely linear processing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-01, Vol.30 (1), p.72-84</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</citedby><cites>FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</cites><orcidid>0000-0001-8432-3963 ; 0000-0002-0239-3392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8363059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8363059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29993725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Min</creatorcontrib><creatorcontrib>Scalzo Dees, Bruno</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for <inline-formula> <tex-math notation="LaTeX">\mathbb {C}^{\eta } </tex-math></inline-formula>-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Estimation</subject><subject>Heuristic algorithms</subject><subject>Interacting multiple-model (IMM) algorithm</subject><subject>Kalman filters</subject><subject>multiple-model adaptive estimation (MMAE)</subject><subject>Numerical models</subject><subject>Performance enhancement</subject><subject>quaternion Kalman filters</subject><subject>quaternion noncircularity</subject><subject>Quaternions</subject><subject>Signal processing algorithms</subject><subject>State estimation</subject><subject>static multiple-model (SMM) algorithm</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Three dimensional models</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>widely linear processing</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1P3DAQhq2qVUHAHyhSZamXXrLY44-1e1tRvqQFhACVm-Ukk9Yom6R2Uol_Xy-77IG5zEh-3hn5fQn5wtmMc2ZPHm5ulvczYNzMwIBVoD-QfeAaChDGfNzN86c9cpTSM8ulmdLSfiZ7YK0Vc1D7xF1P7RiGFovrvsaWLmo_jOEf0rM0hpUfQ9_Rpo9UFD-p72oqc78Pvzvfph90QX-FLHqhy9Chj_Ru8iPGbq1ZDEPsffXnkHxqMotH235AHs_PHk4vi-XtxdXpYllUQvGxULoEo6vGC6v0XEnJFdS6kULYpkQJjZFWavRCQ2mx9GWJXtZgDZasVrYRB-T7Zm8--3fCNLpVSBW2re-wn5IDpo2QgoHJ6Ld36HM_xfWPHHCVnZFc20zBhqpin1LExg0xGxJfHGdunYB7TcCtE3DbBLLo63b1VK6w3kne_M7A8QYIiLh7NkILpqz4DwOLiC8</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Xiang, Min</creator><creator>Scalzo Dees, Bruno</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid><orcidid>https://orcid.org/0000-0002-0239-3392</orcidid></search><sort><creationdate>201901</creationdate><title>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</title><author>Xiang, Min ; Scalzo Dees, Bruno ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Estimation</topic><topic>Heuristic algorithms</topic><topic>Interacting multiple-model (IMM) algorithm</topic><topic>Kalman filters</topic><topic>multiple-model adaptive estimation (MMAE)</topic><topic>Numerical models</topic><topic>Performance enhancement</topic><topic>quaternion Kalman filters</topic><topic>quaternion noncircularity</topic><topic>Quaternions</topic><topic>Signal processing algorithms</topic><topic>State estimation</topic><topic>static multiple-model (SMM) algorithm</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Three dimensional models</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>widely linear processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Min</creatorcontrib><creatorcontrib>Scalzo Dees, Bruno</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Min</au><au>Scalzo Dees, Bruno</au><au>Mandic, Danilo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-01</date><risdate>2019</risdate><volume>30</volume><issue>1</issue><spage>72</spage><epage>84</epage><pages>72-84</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for <inline-formula> <tex-math notation="LaTeX">\mathbb {C}^{\eta } </tex-math></inline-formula>-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29993725</pmid><doi>10.1109/TNNLS.2018.2829526</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid><orcidid>https://orcid.org/0000-0002-0239-3392</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2019-01, Vol.30 (1), p.72-84 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2159994169 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive algorithms Adaptive filters Algorithms Bayesian analysis Computer simulation Estimation Heuristic algorithms Interacting multiple-model (IMM) algorithm Kalman filters multiple-model adaptive estimation (MMAE) Numerical models Performance enhancement quaternion Kalman filters quaternion noncircularity Quaternions Signal processing algorithms State estimation static multiple-model (SMM) algorithm Statistical analysis Statistical inference Three dimensional models Uncertainty Uncertainty analysis widely linear processing |
title | Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Model%20Adaptive%20Estimation%20for%203-D%20and%204-D%20Signals:%20A%20Widely%20Linear%20Quaternion%20Approach&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xiang,%20Min&rft.date=2019-01&rft.volume=30&rft.issue=1&rft.spage=72&rft.epage=84&rft.pages=72-84&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2829526&rft_dat=%3Cproquest_RIE%3E2068343028%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159994169&rft_id=info:pmid/29993725&rft_ieee_id=8363059&rfr_iscdi=true |