Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach

Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2019-01, Vol.30 (1), p.72-84
Hauptverfasser: Xiang, Min, Scalzo Dees, Bruno, Mandic, Danilo P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 72
container_title IEEE transaction on neural networks and learning systems
container_volume 30
creator Xiang, Min
Scalzo Dees, Bruno
Mandic, Danilo P.
description Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for \mathbb {C}^{\eta } -improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.
doi_str_mv 10.1109/TNNLS.2018.2829526
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2159994169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8363059</ieee_id><sourcerecordid>2068343028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qVUHAHyhSZamXXrLY44-1e1tRvqQFhACVm-Ukk9Yom6R2Uol_Xy-77IG5zEh-3hn5fQn5wtmMc2ZPHm5ulvczYNzMwIBVoD-QfeAaChDGfNzN86c9cpTSM8ulmdLSfiZ7YK0Vc1D7xF1P7RiGFovrvsaWLmo_jOEf0rM0hpUfQ9_Rpo9UFD-p72oqc78Pvzvfph90QX-FLHqhy9Chj_Ru8iPGbq1ZDEPsffXnkHxqMotH235AHs_PHk4vi-XtxdXpYllUQvGxULoEo6vGC6v0XEnJFdS6kULYpkQJjZFWavRCQ2mx9GWJXtZgDZasVrYRB-T7Zm8--3fCNLpVSBW2re-wn5IDpo2QgoHJ6Ld36HM_xfWPHHCVnZFc20zBhqpin1LExg0xGxJfHGdunYB7TcCtE3DbBLLo63b1VK6w3kne_M7A8QYIiLh7NkILpqz4DwOLiC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159994169</pqid></control><display><type>article</type><title>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Min ; Scalzo Dees, Bruno ; Mandic, Danilo P.</creator><creatorcontrib>Xiang, Min ; Scalzo Dees, Bruno ; Mandic, Danilo P.</creatorcontrib><description>Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathbb {C}^{\eta } &lt;/tex-math&gt;&lt;/inline-formula&gt;-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2829526</identifier><identifier>PMID: 29993725</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Adaptive filters ; Algorithms ; Bayesian analysis ; Computer simulation ; Estimation ; Heuristic algorithms ; Interacting multiple-model (IMM) algorithm ; Kalman filters ; multiple-model adaptive estimation (MMAE) ; Numerical models ; Performance enhancement ; quaternion Kalman filters ; quaternion noncircularity ; Quaternions ; Signal processing algorithms ; State estimation ; static multiple-model (SMM) algorithm ; Statistical analysis ; Statistical inference ; Three dimensional models ; Uncertainty ; Uncertainty analysis ; widely linear processing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-01, Vol.30 (1), p.72-84</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</citedby><cites>FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</cites><orcidid>0000-0001-8432-3963 ; 0000-0002-0239-3392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8363059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8363059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29993725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Min</creatorcontrib><creatorcontrib>Scalzo Dees, Bruno</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathbb {C}^{\eta } &lt;/tex-math&gt;&lt;/inline-formula&gt;-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Estimation</subject><subject>Heuristic algorithms</subject><subject>Interacting multiple-model (IMM) algorithm</subject><subject>Kalman filters</subject><subject>multiple-model adaptive estimation (MMAE)</subject><subject>Numerical models</subject><subject>Performance enhancement</subject><subject>quaternion Kalman filters</subject><subject>quaternion noncircularity</subject><subject>Quaternions</subject><subject>Signal processing algorithms</subject><subject>State estimation</subject><subject>static multiple-model (SMM) algorithm</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Three dimensional models</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>widely linear processing</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1P3DAQhq2qVUHAHyhSZamXXrLY44-1e1tRvqQFhACVm-Ukk9Yom6R2Uol_Xy-77IG5zEh-3hn5fQn5wtmMc2ZPHm5ulvczYNzMwIBVoD-QfeAaChDGfNzN86c9cpTSM8ulmdLSfiZ7YK0Vc1D7xF1P7RiGFovrvsaWLmo_jOEf0rM0hpUfQ9_Rpo9UFD-p72oqc78Pvzvfph90QX-FLHqhy9Chj_Ru8iPGbq1ZDEPsffXnkHxqMotH235AHs_PHk4vi-XtxdXpYllUQvGxULoEo6vGC6v0XEnJFdS6kULYpkQJjZFWavRCQ2mx9GWJXtZgDZasVrYRB-T7Zm8--3fCNLpVSBW2re-wn5IDpo2QgoHJ6Ld36HM_xfWPHHCVnZFc20zBhqpin1LExg0xGxJfHGdunYB7TcCtE3DbBLLo63b1VK6w3kne_M7A8QYIiLh7NkILpqz4DwOLiC8</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Xiang, Min</creator><creator>Scalzo Dees, Bruno</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid><orcidid>https://orcid.org/0000-0002-0239-3392</orcidid></search><sort><creationdate>201901</creationdate><title>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</title><author>Xiang, Min ; Scalzo Dees, Bruno ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-56b286cfa39567544152d6f4339fbe42f84946ea362b9ebabbea4d298eb0d59f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Estimation</topic><topic>Heuristic algorithms</topic><topic>Interacting multiple-model (IMM) algorithm</topic><topic>Kalman filters</topic><topic>multiple-model adaptive estimation (MMAE)</topic><topic>Numerical models</topic><topic>Performance enhancement</topic><topic>quaternion Kalman filters</topic><topic>quaternion noncircularity</topic><topic>Quaternions</topic><topic>Signal processing algorithms</topic><topic>State estimation</topic><topic>static multiple-model (SMM) algorithm</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Three dimensional models</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>widely linear processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Min</creatorcontrib><creatorcontrib>Scalzo Dees, Bruno</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Min</au><au>Scalzo Dees, Bruno</au><au>Mandic, Danilo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-01</date><risdate>2019</risdate><volume>30</volume><issue>1</issue><spage>72</spage><epage>84</epage><pages>72-84</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mathbb {C}^{\eta } &lt;/tex-math&gt;&lt;/inline-formula&gt;-improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29993725</pmid><doi>10.1109/TNNLS.2018.2829526</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid><orcidid>https://orcid.org/0000-0002-0239-3392</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2019-01, Vol.30 (1), p.72-84
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2159994169
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive algorithms
Adaptive filters
Algorithms
Bayesian analysis
Computer simulation
Estimation
Heuristic algorithms
Interacting multiple-model (IMM) algorithm
Kalman filters
multiple-model adaptive estimation (MMAE)
Numerical models
Performance enhancement
quaternion Kalman filters
quaternion noncircularity
Quaternions
Signal processing algorithms
State estimation
static multiple-model (SMM) algorithm
Statistical analysis
Statistical inference
Three dimensional models
Uncertainty
Uncertainty analysis
widely linear processing
title Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Model%20Adaptive%20Estimation%20for%203-D%20and%204-D%20Signals:%20A%20Widely%20Linear%20Quaternion%20Approach&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xiang,%20Min&rft.date=2019-01&rft.volume=30&rft.issue=1&rft.spage=72&rft.epage=84&rft.pages=72-84&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2829526&rft_dat=%3Cproquest_RIE%3E2068343028%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159994169&rft_id=info:pmid/29993725&rft_ieee_id=8363059&rfr_iscdi=true