Multiple-Model Adaptive Estimation for 3-D and 4-D Signals: A Widely Linear Quaternion Approach

Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2019-01, Vol.30 (1), p.72-84
Hauptverfasser: Xiang, Min, Scalzo Dees, Bruno, Mandic, Danilo P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quaternion state estimation techniques have been used in various applications, yet they are only suitable for dynamical systems represented by a single known model. In order to deal with model uncertainty, this paper proposes a class of widely linear quaternion multiple-model adaptive estimation (WL-QMMAE) algorithms based on widely linear quaternion Kalman filters and Bayesian inference. The augmented second-order quaternion statistics is employed to capture complete second-order statistical information in improper quaternion signals. Within the WL-QMMAE framework, a widely linear quaternion interacting multiple-model algorithm is proposed to track time-variant model uncertainty, while a widely linear quaternion static multiple-model algorithm is proposed for time-invariant model uncertainty. A performance analysis of the proposed algorithms shows that, as expected, the WL-QMMAE reduces to semiwidely linear QMMAE for \mathbb {C}^{\eta } -improper signals and further reduces to strictly linear QMMAE for proper signals. Simulation results indicate that for improper signals, the proposed WL-QMMAE algorithms exhibit an enhanced performance over their strictly linear counterparts. The effectiveness of the proposed recursive performance analysis algorithm is also validated.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2018.2829526