Finite-Time Boundedness Control for Nonlinear Networked Systems with Randomly Occurring Multi-Distributed Delays and Missing Measurements

This paper investigates the stochastic finite-time H∞ boundedness problem for nonlinear discrete time networked systems with randomly occurring multi-distributed delays and missing measurements. The randomly occurring multi-distributed delays and missing measurements are described as Bernoulli distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: Hou, Ling, Chen, Dongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the stochastic finite-time H∞ boundedness problem for nonlinear discrete time networked systems with randomly occurring multi-distributed delays and missing measurements. The randomly occurring multi-distributed delays and missing measurements are described as Bernoulli distributed white noise sequence. The goal of this paper is to design a full-order output-feedback controller to guarantee that the corresponding closed-loop system is stochastic finite-time H∞ bounded and with desired H∞ performance. By constructing a new Lyapunov-Krasovskii functional, sufficient conditions for the existence of output-feedback are established. The desired full-order output-feedback controller is designed in terms of the solution to linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the validity of the designed method.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/5109646