Limitations Of Richardson Extrapolation For Kernel Density Estimation
This paper develops the process of using Richardson Extrapolation to improve the Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) estimate of a probability density function for a distribution of data in \(R_d\) given a set of data from the distribution. The m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops the process of using Richardson Extrapolation to improve the Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) estimate of a probability density function for a distribution of data in \(R_d\) given a set of data from the distribution. The method of Richardson Extrapolation is explained, showing how to fix conditioning issues that arise with higher-order extrapolations. Then, it is shown why higher-order estimators do not always provide the best estimate, and it is discussed how to choose the optimal order of the estimate. It is shown that given n one-dimensional data points, it is possible to estimate the probability density function with a mean squared error value on the order of only \(n^{-1}\sqrt{\ln(n)}\). Finally, this paper introduces a possible direction of future research that could further minimize the mean squared error. |
---|---|
ISSN: | 2331-8422 |