Dimension of harmonic measures in hyperbolic spaces

We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-02, Vol.39 (2), p.474-499
1. Verfasser: TANAKA, RYOKICHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 2
container_start_page 474
container_title Ergodic theory and dynamical systems
container_volume 39
creator TANAKA, RYOKICHI
description We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.
doi_str_mv 10.1017/etds.2017.23
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159276214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2017_23</cupid><sourcerecordid>2159276214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-97b95c6ad1bbd4d669bc74813dba860bad37062c5a3b45df14e97702dfc2c8323</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWKs3f0DBq635TnOU9RMWvOg55Ktulm1Tk_aw_94uu-DF0wzDM-8wDwC3CDYIIvHgJ5cbvHQNJmegQJTLmlIkzkEBESU1aZm4BFc5byGEBAlWAPIUej_kEIcqdtVGpz4OwVa913lOPldhqDb70ScTd8s4j9r6fA0uOr3L_uZUS_D18vy5eqvXH6_vq8d1bQlvp1oKI5nl2iFjHHWcS2MFbRFxRrccGu2IgBxbpomhzHWIeikExK6z2LYEkxLcHXPHFH9mnye1jXMalpMKIyax4Hj5qgT3R8qmmHPynRpT6HXaKwTVQYs6aFEHLQqTBW9OuO5NCu7b_6X-u_AL4yJkwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159276214</pqid></control><display><type>article</type><title>Dimension of harmonic measures in hyperbolic spaces</title><source>Cambridge Journals</source><creator>TANAKA, RYOKICHI</creator><creatorcontrib>TANAKA, RYOKICHI</creatorcontrib><description>We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2017.23</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Original Article ; Random walk ; Riemann manifold</subject><ispartof>Ergodic theory and dynamical systems, 2019-02, Vol.39 (2), p.474-499</ispartof><rights>Cambridge University Press, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-97b95c6ad1bbd4d669bc74813dba860bad37062c5a3b45df14e97702dfc2c8323</citedby><cites>FETCH-LOGICAL-c368t-97b95c6ad1bbd4d669bc74813dba860bad37062c5a3b45df14e97702dfc2c8323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385717000232/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>TANAKA, RYOKICHI</creatorcontrib><title>Dimension of harmonic measures in hyperbolic spaces</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.</description><subject>Original Article</subject><subject>Random walk</subject><subject>Riemann manifold</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LxDAQhoMoWKs3f0DBq635TnOU9RMWvOg55Ktulm1Tk_aw_94uu-DF0wzDM-8wDwC3CDYIIvHgJ5cbvHQNJmegQJTLmlIkzkEBESU1aZm4BFc5byGEBAlWAPIUej_kEIcqdtVGpz4OwVa913lOPldhqDb70ScTd8s4j9r6fA0uOr3L_uZUS_D18vy5eqvXH6_vq8d1bQlvp1oKI5nl2iFjHHWcS2MFbRFxRrccGu2IgBxbpomhzHWIeikExK6z2LYEkxLcHXPHFH9mnye1jXMalpMKIyax4Hj5qgT3R8qmmHPynRpT6HXaKwTVQYs6aFEHLQqTBW9OuO5NCu7b_6X-u_AL4yJkwg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>TANAKA, RYOKICHI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190201</creationdate><title>Dimension of harmonic measures in hyperbolic spaces</title><author>TANAKA, RYOKICHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-97b95c6ad1bbd4d669bc74813dba860bad37062c5a3b45df14e97702dfc2c8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Original Article</topic><topic>Random walk</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TANAKA, RYOKICHI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TANAKA, RYOKICHI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension of harmonic measures in hyperbolic spaces</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>39</volume><issue>2</issue><spage>474</spage><epage>499</epage><pages>474-499</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2017.23</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2019-02, Vol.39 (2), p.474-499
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2159276214
source Cambridge Journals
subjects Original Article
Random walk
Riemann manifold
title Dimension of harmonic measures in hyperbolic spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20of%20harmonic%20measures%20in%20hyperbolic%20spaces&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=TANAKA,%20RYOKICHI&rft.date=2019-02-01&rft.volume=39&rft.issue=2&rft.spage=474&rft.epage=499&rft.pages=474-499&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2017.23&rft_dat=%3Cproquest_cross%3E2159276214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159276214&rft_id=info:pmid/&rft_cupid=10_1017_etds_2017_23&rfr_iscdi=true