Dimension of harmonic measures in hyperbolic spaces

We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-02, Vol.39 (2), p.474-499
1. Verfasser: TANAKA, RYOKICHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2017.23