Discounted penalty function at Parisian ruin for Lévy insurance risk process

In the setting of a Lévy insurance risk process, we present some results regarding the Parisian ruin problem which concerns the occurrence of an excursion below zero of duration bigger than a given threshold r. First, we give the joint Laplace transform of ruin-time and ruin-position (possibly kille...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2018-11, Vol.83, p.190-197
Hauptverfasser: Loeffen, R., Palmowski, Z., Surya, B.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of a Lévy insurance risk process, we present some results regarding the Parisian ruin problem which concerns the occurrence of an excursion below zero of duration bigger than a given threshold r. First, we give the joint Laplace transform of ruin-time and ruin-position (possibly killed at the first-passage time above a fixed level b), which generalizes known results concerning Parisian ruin. This identity can be used to compute the expected discounted penalty function via Laplace inversion. Second, we obtain the q-potential measure of the process killed at Parisian ruin. The results have semi-explicit expressions in terms of the q-scale function and the distribution of the Lévy process.
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2017.10.008