Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach

This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2019-01, Vol.49 (1), p.122-132
Hauptverfasser: Ning, Boda, Han, Qing-Long, Zuo, Zongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 122
container_title IEEE transactions on cybernetics
container_volume 49
creator Ning, Boda
Han, Qing-Long
Zuo, Zongyu
description This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex functions known to individual agents is minimized. In the case of time-varying cost functions, based on the new distributed protocol in the case of time-invariant cost functions, a distributed protocol is provided by taking the Hessian matrix into account. In both cases, stability conditions are derived to ensure that the distributed optimization problem is solved under both fixed and switching communication topologies. A distinctive feature of the results in this paper is that an upper bound of settling time for consensus can be estimated without dependence on initial states of agents, and thus can be made arbitrarily small through adjusting system parameters. Therefore, the results in this paper can be applicable in an unknown environment such as drone rendezvous within a required time for military purpose while optimizing local objectives. Case studies of a power output agreement for battery packages are provided to demonstrate the effectiveness of the theoretical results.
doi_str_mv 10.1109/TCYB.2017.2766762
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2158896242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8100702</ieee_id><sourcerecordid>2068346053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-578f8888a65d5628508d6e456664546c3aa1c596147ebd8d3f14f40ca246a3d43</originalsourceid><addsrcrecordid>eNpdkE1L7DAUhoMoKuoPEEEKbtx0zOdp6m4c9V5BceG4EISQaU41Mm3HJgW9v_5mmHEWnk1CzvOeHB5CjhkdMUbLi-nk5WrEKStGvAAogG-Rfc5A55wXantzh2KPHIXwQVPp9FTqXbLHy7KkTIt98nrtQ-z9bIjossdF9I3_Z6Pv2qzu-uxhmEdv37CN2dN3iNiEy2zcZjfuDfMrG1Lk1n-hy6e-wWzStQHbMIRsvFj0na3eD8lObecBj9bnAXm-vZlO_ub3j3_uJuP7vBKyjLkqdK1TWVBOAdeKagcoFQBIJaES1rJKlcBkgTOnnaiZrCWtLJdghZPigJyv5qZvPwcM0TQ-VDif2xa7IRhOQQsJVImEnv1CP7qhb9N2hjOldQlc8kSxFVX1XQg91mbR-8b234ZRs7RvlvbN0r5Z20-Z0_XkYdag2yR-XCfgZAV4RNy0NaO0oFz8B0hShtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158896242</pqid></control><display><type>article</type><title>Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Ning, Boda ; Han, Qing-Long ; Zuo, Zongyu</creator><creatorcontrib>Ning, Boda ; Han, Qing-Long ; Zuo, Zongyu</creatorcontrib><description>This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex functions known to individual agents is minimized. In the case of time-varying cost functions, based on the new distributed protocol in the case of time-invariant cost functions, a distributed protocol is provided by taking the Hessian matrix into account. In both cases, stability conditions are derived to ensure that the distributed optimization problem is solved under both fixed and switching communication topologies. A distinctive feature of the results in this paper is that an upper bound of settling time for consensus can be estimated without dependence on initial states of agents, and thus can be made arbitrarily small through adjusting system parameters. Therefore, the results in this paper can be applicable in an unknown environment such as drone rendezvous within a required time for military purpose while optimizing local objectives. Case studies of a power output agreement for battery packages are provided to demonstrate the effectiveness of the theoretical results.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2766762</identifier><identifier>PMID: 29990183</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Batteries ; Convergence ; Convex functions ; Cost function ; Dependence ; Distributed optimization ; Economic models ; fixed-time consensus ; Hessian matrices ; Invariants ; Multi-agent systems ; Multiagent systems ; Optimization ; Protocols ; Rendezvous ; Switches ; Unknown environments ; Upper bounds</subject><ispartof>IEEE transactions on cybernetics, 2019-01, Vol.49 (1), p.122-132</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-578f8888a65d5628508d6e456664546c3aa1c596147ebd8d3f14f40ca246a3d43</citedby><cites>FETCH-LOGICAL-c349t-578f8888a65d5628508d6e456664546c3aa1c596147ebd8d3f14f40ca246a3d43</cites><orcidid>0000-0002-7207-0716 ; 0000-0003-3444-9538 ; 0000-0002-7813-4872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8100702$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8100702$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29990183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Boda</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Zuo, Zongyu</creatorcontrib><title>Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex functions known to individual agents is minimized. In the case of time-varying cost functions, based on the new distributed protocol in the case of time-invariant cost functions, a distributed protocol is provided by taking the Hessian matrix into account. In both cases, stability conditions are derived to ensure that the distributed optimization problem is solved under both fixed and switching communication topologies. A distinctive feature of the results in this paper is that an upper bound of settling time for consensus can be estimated without dependence on initial states of agents, and thus can be made arbitrarily small through adjusting system parameters. Therefore, the results in this paper can be applicable in an unknown environment such as drone rendezvous within a required time for military purpose while optimizing local objectives. Case studies of a power output agreement for battery packages are provided to demonstrate the effectiveness of the theoretical results.</description><subject>Batteries</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Cost function</subject><subject>Dependence</subject><subject>Distributed optimization</subject><subject>Economic models</subject><subject>fixed-time consensus</subject><subject>Hessian matrices</subject><subject>Invariants</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Protocols</subject><subject>Rendezvous</subject><subject>Switches</subject><subject>Unknown environments</subject><subject>Upper bounds</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1L7DAUhoMoKuoPEEEKbtx0zOdp6m4c9V5BceG4EISQaU41Mm3HJgW9v_5mmHEWnk1CzvOeHB5CjhkdMUbLi-nk5WrEKStGvAAogG-Rfc5A55wXantzh2KPHIXwQVPp9FTqXbLHy7KkTIt98nrtQ-z9bIjossdF9I3_Z6Pv2qzu-uxhmEdv37CN2dN3iNiEy2zcZjfuDfMrG1Lk1n-hy6e-wWzStQHbMIRsvFj0na3eD8lObecBj9bnAXm-vZlO_ub3j3_uJuP7vBKyjLkqdK1TWVBOAdeKagcoFQBIJaES1rJKlcBkgTOnnaiZrCWtLJdghZPigJyv5qZvPwcM0TQ-VDif2xa7IRhOQQsJVImEnv1CP7qhb9N2hjOldQlc8kSxFVX1XQg91mbR-8b234ZRs7RvlvbN0r5Z20-Z0_XkYdag2yR-XCfgZAV4RNy0NaO0oFz8B0hShtA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ning, Boda</creator><creator>Han, Qing-Long</creator><creator>Zuo, Zongyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-3444-9538</orcidid><orcidid>https://orcid.org/0000-0002-7813-4872</orcidid></search><sort><creationdate>201901</creationdate><title>Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach</title><author>Ning, Boda ; Han, Qing-Long ; Zuo, Zongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-578f8888a65d5628508d6e456664546c3aa1c596147ebd8d3f14f40ca246a3d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Cost function</topic><topic>Dependence</topic><topic>Distributed optimization</topic><topic>Economic models</topic><topic>fixed-time consensus</topic><topic>Hessian matrices</topic><topic>Invariants</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Protocols</topic><topic>Rendezvous</topic><topic>Switches</topic><topic>Unknown environments</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Boda</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Zuo, Zongyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning, Boda</au><au>Han, Qing-Long</au><au>Zuo, Zongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2019-01</date><risdate>2019</risdate><volume>49</volume><issue>1</issue><spage>122</spage><epage>132</epage><pages>122-132</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex functions known to individual agents is minimized. In the case of time-varying cost functions, based on the new distributed protocol in the case of time-invariant cost functions, a distributed protocol is provided by taking the Hessian matrix into account. In both cases, stability conditions are derived to ensure that the distributed optimization problem is solved under both fixed and switching communication topologies. A distinctive feature of the results in this paper is that an upper bound of settling time for consensus can be estimated without dependence on initial states of agents, and thus can be made arbitrarily small through adjusting system parameters. Therefore, the results in this paper can be applicable in an unknown environment such as drone rendezvous within a required time for military purpose while optimizing local objectives. Case studies of a power output agreement for battery packages are provided to demonstrate the effectiveness of the theoretical results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29990183</pmid><doi>10.1109/TCYB.2017.2766762</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-3444-9538</orcidid><orcidid>https://orcid.org/0000-0002-7813-4872</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2019-01, Vol.49 (1), p.122-132
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2158896242
source IEEE Electronic Library (IEL)
subjects Batteries
Convergence
Convex functions
Cost function
Dependence
Distributed optimization
Economic models
fixed-time consensus
Hessian matrices
Invariants
Multi-agent systems
Multiagent systems
Optimization
Protocols
Rendezvous
Switches
Unknown environments
Upper bounds
title Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Optimization%20for%20Multiagent%20Systems:%20An%20Edge-Based%20Fixed-Time%20Consensus%20Approach&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Ning,%20Boda&rft.date=2019-01&rft.volume=49&rft.issue=1&rft.spage=122&rft.epage=132&rft.pages=122-132&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2766762&rft_dat=%3Cproquest_RIE%3E2068346053%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158896242&rft_id=info:pmid/29990183&rft_ieee_id=8100702&rfr_iscdi=true