Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach
This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2019-01, Vol.49 (1), p.122-132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the problem of distributed optimization for multiagent systems by using an edge-based fixed-time consensus approach. In the case of time-invariant cost functions, a new distributed protocol is proposed to achieve the state agreement in a fixed time while the sum of local convex functions known to individual agents is minimized. In the case of time-varying cost functions, based on the new distributed protocol in the case of time-invariant cost functions, a distributed protocol is provided by taking the Hessian matrix into account. In both cases, stability conditions are derived to ensure that the distributed optimization problem is solved under both fixed and switching communication topologies. A distinctive feature of the results in this paper is that an upper bound of settling time for consensus can be estimated without dependence on initial states of agents, and thus can be made arbitrarily small through adjusting system parameters. Therefore, the results in this paper can be applicable in an unknown environment such as drone rendezvous within a required time for military purpose while optimizing local objectives. Case studies of a power output agreement for battery packages are provided to demonstrate the effectiveness of the theoretical results. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2017.2766762 |