Extracting Small‐Signal Model Parameters of Graphene‐Based Field‐Effect Transistors

This paper is aimed at extracting the intrinsic and extrinsic model parameter values of a small signal model based only on S‐parameter measurements. An analytically derived method to extract parasitic resistances and then obtain the all intrinsic parameters according to the previous method are propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2018-12, Vol.215 (24), p.n/a
Hauptverfasser: Wang, Shao‐Qing, Miao, Rui‐Xia, Peng, Song‐Ang, Jin, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is aimed at extracting the intrinsic and extrinsic model parameter values of a small signal model based only on S‐parameter measurements. An analytically derived method to extract parasitic resistances and then obtain the all intrinsic parameters according to the previous method are proposed. Experiment results show the extracted model parameters can fit the test data well for our device, which illustrate the validity and accuracy of the extraction method. In addition, the authors analyze the huge differences of small‐signal parameters between graphene‐based field‐effect transistors (FETs) and traditional MOSFETs in saturation, and then point out the specific direction of improving the radio frequency performance of graphene‐based field‐effect transistors. High‐performance graphene field‐effect transistors (GFETs) for radio frequency applications have attracted much attention. Consequently, it is required for a device model to be implemented in circuit simulator. Similar models have been adopted in recent years, but no detail parameters extraction process is given. This article provides a detail process for GFETs to extract small‐signal model parameters based only on S‐parameter measurements.
ISSN:1862-6300
1862-6319
DOI:10.1002/pssa.201800477