Strain Effect in Highly‐Doped n‐Type 3C‐SiC‐on‐Glass Substrate for Mechanical Sensors and Mobility Enhancement

This work reports the strain effect on the electrical properties of highly doped n‐type single crystalline cubic silicon carbide (3C‐SiC) transferred onto a 6‐inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of −8.6 in longitudinal direction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2018-12, Vol.215 (24), p.n/a
Hauptverfasser: Phan, Hoang‐Phuong, Nguyen, Tuan‐Khoa, Dinh, Toan, Cheng, Han‐Hao, Mu, Fengwen, Iacopi, Alan, Hold, Leonie, Dao, Dzung Viet, Suga, Tadatomo, Senesky, Debbie G., Nguyen, Nam‐Trung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 215
creator Phan, Hoang‐Phuong
Nguyen, Tuan‐Khoa
Dinh, Toan
Cheng, Han‐Hao
Mu, Fengwen
Iacopi, Alan
Hold, Leonie
Dao, Dzung Viet
Suga, Tadatomo
Senesky, Debbie G.
Nguyen, Nam‐Trung
description This work reports the strain effect on the electrical properties of highly doped n‐type single crystalline cubic silicon carbide (3C‐SiC) transferred onto a 6‐inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of −8.6 in longitudinal direction and 10.5 in transverse direction along the [100] orientation. The piezoresistive effect in the highly doped 3C‐SiC film also exhibits an excellent linearity and consistent reproducibility after several bending cycles. The experimental result is in good agreement with the theoretical analysis based on the phenomenon of electron transfer between many valleys in the conduction band of n‐type 3C‐SiC. Our finding for the large gauge factor in n‐type 3C‐SiC coupled with the elimination of the current leak to the insulated substrate could pave the way for the development of single crystal SiC‐on‐glass based MEMS applications. This work presents the characterization and theoretical analysis of the piezoresistive effect in n‐type cubic silicon carbide. The silicon carbide film is epitaxially grown on a Si wafer, and then transferred onto a glass substrate using anodic bonding. The SiC‐on‐glass template eliminates the leakage current to the substrate, enabling the development of piezoresistive sensors in harsh environments.
doi_str_mv 10.1002/pssa.201800288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2158187183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158187183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-eb5448c5fe1515dedd38d2577623dec15ea60c7245447868133f8ef0cd5f36e83</originalsourceid><addsrcrecordid>eNqFUMFOwzAMrRBIjMGVcyTOHUnTtNlxGmNDGgKp4xxlicM6dWlJOkFvfALfyJeQamgcudjP9nu2_KLomuARwTi5bbyXowQTHgrOT6IB4VkSZ5SMT48Y4_PowvstxilLczKIPorWydKimTGgWhTQonzdVN3359dd3YBGNqBV1wCi04CKso9135xX0ntU7Nc-bGgBmdqhR1AbaUslK1SA9bXzSFqNHut1WZVth2Y2jBXswLaX0ZmRlYer3zyMXu5nq-kiXj7NH6aTZawoyXkMa5amXDEDhBGmQWvKdcLyPEuoBkUYyAyrPAnvpDnPOKHUcDBYaWZoBpwOo5vD3sbVb3vwrdjWe2fDSZEQxgnPCaeBNTqwlKu9d2BE48qddJ0gWPTuit5dcXQ3CMYHwXtZQfcPWzwXxeRP-wNzSoOV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158187183</pqid></control><display><type>article</type><title>Strain Effect in Highly‐Doped n‐Type 3C‐SiC‐on‐Glass Substrate for Mechanical Sensors and Mobility Enhancement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Phan, Hoang‐Phuong ; Nguyen, Tuan‐Khoa ; Dinh, Toan ; Cheng, Han‐Hao ; Mu, Fengwen ; Iacopi, Alan ; Hold, Leonie ; Dao, Dzung Viet ; Suga, Tadatomo ; Senesky, Debbie G. ; Nguyen, Nam‐Trung</creator><creatorcontrib>Phan, Hoang‐Phuong ; Nguyen, Tuan‐Khoa ; Dinh, Toan ; Cheng, Han‐Hao ; Mu, Fengwen ; Iacopi, Alan ; Hold, Leonie ; Dao, Dzung Viet ; Suga, Tadatomo ; Senesky, Debbie G. ; Nguyen, Nam‐Trung</creatorcontrib><description>This work reports the strain effect on the electrical properties of highly doped n‐type single crystalline cubic silicon carbide (3C‐SiC) transferred onto a 6‐inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of −8.6 in longitudinal direction and 10.5 in transverse direction along the [100] orientation. The piezoresistive effect in the highly doped 3C‐SiC film also exhibits an excellent linearity and consistent reproducibility after several bending cycles. The experimental result is in good agreement with the theoretical analysis based on the phenomenon of electron transfer between many valleys in the conduction band of n‐type 3C‐SiC. Our finding for the large gauge factor in n‐type 3C‐SiC coupled with the elimination of the current leak to the insulated substrate could pave the way for the development of single crystal SiC‐on‐glass based MEMS applications. This work presents the characterization and theoretical analysis of the piezoresistive effect in n‐type cubic silicon carbide. The silicon carbide film is epitaxially grown on a Si wafer, and then transferred onto a glass substrate using anodic bonding. The SiC‐on‐glass template eliminates the leakage current to the substrate, enabling the development of piezoresistive sensors in harsh environments.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201800288</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Conduction bands ; Electrical properties ; Electron transfer ; Glass substrates ; Linearity ; MEMS ; Orientation effects ; piezoresistance ; Reproducibility ; Silicon carbide ; Single crystals ; Strain ; strain engineering ; wafer bonding</subject><ispartof>Physica status solidi. A, Applications and materials science, 2018-12, Vol.215 (24), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-eb5448c5fe1515dedd38d2577623dec15ea60c7245447868133f8ef0cd5f36e83</citedby><cites>FETCH-LOGICAL-c3178-eb5448c5fe1515dedd38d2577623dec15ea60c7245447868133f8ef0cd5f36e83</cites><orcidid>0000-0002-1724-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201800288$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201800288$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Phan, Hoang‐Phuong</creatorcontrib><creatorcontrib>Nguyen, Tuan‐Khoa</creatorcontrib><creatorcontrib>Dinh, Toan</creatorcontrib><creatorcontrib>Cheng, Han‐Hao</creatorcontrib><creatorcontrib>Mu, Fengwen</creatorcontrib><creatorcontrib>Iacopi, Alan</creatorcontrib><creatorcontrib>Hold, Leonie</creatorcontrib><creatorcontrib>Dao, Dzung Viet</creatorcontrib><creatorcontrib>Suga, Tadatomo</creatorcontrib><creatorcontrib>Senesky, Debbie G.</creatorcontrib><creatorcontrib>Nguyen, Nam‐Trung</creatorcontrib><title>Strain Effect in Highly‐Doped n‐Type 3C‐SiC‐on‐Glass Substrate for Mechanical Sensors and Mobility Enhancement</title><title>Physica status solidi. A, Applications and materials science</title><description>This work reports the strain effect on the electrical properties of highly doped n‐type single crystalline cubic silicon carbide (3C‐SiC) transferred onto a 6‐inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of −8.6 in longitudinal direction and 10.5 in transverse direction along the [100] orientation. The piezoresistive effect in the highly doped 3C‐SiC film also exhibits an excellent linearity and consistent reproducibility after several bending cycles. The experimental result is in good agreement with the theoretical analysis based on the phenomenon of electron transfer between many valleys in the conduction band of n‐type 3C‐SiC. Our finding for the large gauge factor in n‐type 3C‐SiC coupled with the elimination of the current leak to the insulated substrate could pave the way for the development of single crystal SiC‐on‐glass based MEMS applications. This work presents the characterization and theoretical analysis of the piezoresistive effect in n‐type cubic silicon carbide. The silicon carbide film is epitaxially grown on a Si wafer, and then transferred onto a glass substrate using anodic bonding. The SiC‐on‐glass template eliminates the leakage current to the substrate, enabling the development of piezoresistive sensors in harsh environments.</description><subject>Conduction bands</subject><subject>Electrical properties</subject><subject>Electron transfer</subject><subject>Glass substrates</subject><subject>Linearity</subject><subject>MEMS</subject><subject>Orientation effects</subject><subject>piezoresistance</subject><subject>Reproducibility</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><subject>Strain</subject><subject>strain engineering</subject><subject>wafer bonding</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMFOwzAMrRBIjMGVcyTOHUnTtNlxGmNDGgKp4xxlicM6dWlJOkFvfALfyJeQamgcudjP9nu2_KLomuARwTi5bbyXowQTHgrOT6IB4VkSZ5SMT48Y4_PowvstxilLczKIPorWydKimTGgWhTQonzdVN3359dd3YBGNqBV1wCi04CKso9135xX0ntU7Nc-bGgBmdqhR1AbaUslK1SA9bXzSFqNHut1WZVth2Y2jBXswLaX0ZmRlYer3zyMXu5nq-kiXj7NH6aTZawoyXkMa5amXDEDhBGmQWvKdcLyPEuoBkUYyAyrPAnvpDnPOKHUcDBYaWZoBpwOo5vD3sbVb3vwrdjWe2fDSZEQxgnPCaeBNTqwlKu9d2BE48qddJ0gWPTuit5dcXQ3CMYHwXtZQfcPWzwXxeRP-wNzSoOV</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Phan, Hoang‐Phuong</creator><creator>Nguyen, Tuan‐Khoa</creator><creator>Dinh, Toan</creator><creator>Cheng, Han‐Hao</creator><creator>Mu, Fengwen</creator><creator>Iacopi, Alan</creator><creator>Hold, Leonie</creator><creator>Dao, Dzung Viet</creator><creator>Suga, Tadatomo</creator><creator>Senesky, Debbie G.</creator><creator>Nguyen, Nam‐Trung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1724-5667</orcidid></search><sort><creationdate>20181201</creationdate><title>Strain Effect in Highly‐Doped n‐Type 3C‐SiC‐on‐Glass Substrate for Mechanical Sensors and Mobility Enhancement</title><author>Phan, Hoang‐Phuong ; Nguyen, Tuan‐Khoa ; Dinh, Toan ; Cheng, Han‐Hao ; Mu, Fengwen ; Iacopi, Alan ; Hold, Leonie ; Dao, Dzung Viet ; Suga, Tadatomo ; Senesky, Debbie G. ; Nguyen, Nam‐Trung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-eb5448c5fe1515dedd38d2577623dec15ea60c7245447868133f8ef0cd5f36e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conduction bands</topic><topic>Electrical properties</topic><topic>Electron transfer</topic><topic>Glass substrates</topic><topic>Linearity</topic><topic>MEMS</topic><topic>Orientation effects</topic><topic>piezoresistance</topic><topic>Reproducibility</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><topic>Strain</topic><topic>strain engineering</topic><topic>wafer bonding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Hoang‐Phuong</creatorcontrib><creatorcontrib>Nguyen, Tuan‐Khoa</creatorcontrib><creatorcontrib>Dinh, Toan</creatorcontrib><creatorcontrib>Cheng, Han‐Hao</creatorcontrib><creatorcontrib>Mu, Fengwen</creatorcontrib><creatorcontrib>Iacopi, Alan</creatorcontrib><creatorcontrib>Hold, Leonie</creatorcontrib><creatorcontrib>Dao, Dzung Viet</creatorcontrib><creatorcontrib>Suga, Tadatomo</creatorcontrib><creatorcontrib>Senesky, Debbie G.</creatorcontrib><creatorcontrib>Nguyen, Nam‐Trung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan, Hoang‐Phuong</au><au>Nguyen, Tuan‐Khoa</au><au>Dinh, Toan</au><au>Cheng, Han‐Hao</au><au>Mu, Fengwen</au><au>Iacopi, Alan</au><au>Hold, Leonie</au><au>Dao, Dzung Viet</au><au>Suga, Tadatomo</au><au>Senesky, Debbie G.</au><au>Nguyen, Nam‐Trung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Effect in Highly‐Doped n‐Type 3C‐SiC‐on‐Glass Substrate for Mechanical Sensors and Mobility Enhancement</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>215</volume><issue>24</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>This work reports the strain effect on the electrical properties of highly doped n‐type single crystalline cubic silicon carbide (3C‐SiC) transferred onto a 6‐inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of −8.6 in longitudinal direction and 10.5 in transverse direction along the [100] orientation. The piezoresistive effect in the highly doped 3C‐SiC film also exhibits an excellent linearity and consistent reproducibility after several bending cycles. The experimental result is in good agreement with the theoretical analysis based on the phenomenon of electron transfer between many valleys in the conduction band of n‐type 3C‐SiC. Our finding for the large gauge factor in n‐type 3C‐SiC coupled with the elimination of the current leak to the insulated substrate could pave the way for the development of single crystal SiC‐on‐glass based MEMS applications. This work presents the characterization and theoretical analysis of the piezoresistive effect in n‐type cubic silicon carbide. The silicon carbide film is epitaxially grown on a Si wafer, and then transferred onto a glass substrate using anodic bonding. The SiC‐on‐glass template eliminates the leakage current to the substrate, enabling the development of piezoresistive sensors in harsh environments.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201800288</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1724-5667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2018-12, Vol.215 (24), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2158187183
source Wiley Online Library Journals Frontfile Complete
subjects Conduction bands
Electrical properties
Electron transfer
Glass substrates
Linearity
MEMS
Orientation effects
piezoresistance
Reproducibility
Silicon carbide
Single crystals
Strain
strain engineering
wafer bonding
title Strain Effect in Highly‐Doped n‐Type 3C‐SiC‐on‐Glass Substrate for Mechanical Sensors and Mobility Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Effect%20in%20Highly%E2%80%90Doped%20n%E2%80%90Type%203C%E2%80%90SiC%E2%80%90on%E2%80%90Glass%20Substrate%20for%20Mechanical%20Sensors%20and%20Mobility%20Enhancement&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Phan,%20Hoang%E2%80%90Phuong&rft.date=2018-12-01&rft.volume=215&rft.issue=24&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201800288&rft_dat=%3Cproquest_cross%3E2158187183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158187183&rft_id=info:pmid/&rfr_iscdi=true