Harmonic Modeling of a Diode-Clamped Multilevel Voltage Source Converter for Predicting Uncharacteristic Harmonics
In response to the growing demand for medium- and high-power trends, multilevel voltage source converters (VSCs) have been attracting growing considerations. One of the widely used VSCs are the diode-clamped multilevel VSC (DCM-VSC). As these converters proliferate, their harmonic impact may become...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In response to the growing demand for medium- and high-power trends, multilevel voltage source converters (VSCs) have been attracting growing considerations. One of the widely used VSCs are the diode-clamped multilevel VSC (DCM-VSC). As these converters proliferate, their harmonic impact may become significant. Nevertheless, a harmonic model for the DCM-VSC is currently lacking in the literature. In this paper, the ABCD matrix, mapping the input harmonics to the output harmonics of DCM-VSC, is derived. As the matrix is formulated in the time-domain, the output harmonics are exact and do not suffer from harmonic truncation errors. As the paper will demonstrate, the derived ABCD matrix can be easily applied to a microgrid system and users can easily predict all the uncharacteristic harmonics when a microgrid is subjected to various conditions of imbalance. In addition to all the results being validated with those of PSCAD/EMTDC, the computation time of the proposed method is in contrast much shorter. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/3250761 |