Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions
We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lepeshkin, S V Baturin, V S Uspenskii, Yu A Oganov, Artem R |
description | We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2158091078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158091078</sourcerecordid><originalsourceid>FETCH-proquest_journals_21580910783</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBYMgWLT_EPBcSBNr61kU73qXmKa4Jc3WbIL497bgB3h6DDO8BcukUmXR7KRcsZyoF0LIfS2rSmXseYUhuai9xUR8DLYFEwE9x47riAMYTjEkE1OwXPt2Iv0AB_EzF157NC5RtIE4eK75G9qpC1bP2uAwIsH8Rxu27LQjm_92zbbn0-14KcaAr2Qp3ntMwU_qLsuqEYdS1I36r_oCB-lI8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158091078</pqid></control><display><type>article</type><title>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</title><source>Free E- Journals</source><creator>Lepeshkin, S V ; Baturin, V S ; Uspenskii, Yu A ; Oganov, Artem R</creator><creatorcontrib>Lepeshkin, S V ; Baturin, V S ; Uspenskii, Yu A ; Oganov, Artem R</creatorcontrib><description>We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n<=15 and m<=20. The obtained map of Si-O cluster stability shows the existence of both expected (SiO2)n and unexpected (e.g. Si4O18) stable ("magic") clusters, which can be important for miscellaneous applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic structure ; Clusters ; Composition ; Evolutionary algorithms ; First principles ; Global optimization ; Nanoclusters ; Silicon dioxide ; Structural stability</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lepeshkin, S V</creatorcontrib><creatorcontrib>Baturin, V S</creatorcontrib><creatorcontrib>Uspenskii, Yu A</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><title>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</title><title>arXiv.org</title><description>We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n<=15 and m<=20. The obtained map of Si-O cluster stability shows the existence of both expected (SiO2)n and unexpected (e.g. Si4O18) stable ("magic") clusters, which can be important for miscellaneous applications.</description><subject>Atomic structure</subject><subject>Clusters</subject><subject>Composition</subject><subject>Evolutionary algorithms</subject><subject>First principles</subject><subject>Global optimization</subject><subject>Nanoclusters</subject><subject>Silicon dioxide</subject><subject>Structural stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKwjAQBYMgWLT_EPBcSBNr61kU73qXmKa4Jc3WbIL497bgB3h6DDO8BcukUmXR7KRcsZyoF0LIfS2rSmXseYUhuai9xUR8DLYFEwE9x47riAMYTjEkE1OwXPt2Iv0AB_EzF157NC5RtIE4eK75G9qpC1bP2uAwIsH8Rxu27LQjm_92zbbn0-14KcaAr2Qp3ntMwU_qLsuqEYdS1I36r_oCB-lI8A</recordid><startdate>20181217</startdate><enddate>20181217</enddate><creator>Lepeshkin, S V</creator><creator>Baturin, V S</creator><creator>Uspenskii, Yu A</creator><creator>Oganov, Artem R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181217</creationdate><title>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</title><author>Lepeshkin, S V ; Baturin, V S ; Uspenskii, Yu A ; Oganov, Artem R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21580910783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic structure</topic><topic>Clusters</topic><topic>Composition</topic><topic>Evolutionary algorithms</topic><topic>First principles</topic><topic>Global optimization</topic><topic>Nanoclusters</topic><topic>Silicon dioxide</topic><topic>Structural stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Lepeshkin, S V</creatorcontrib><creatorcontrib>Baturin, V S</creatorcontrib><creatorcontrib>Uspenskii, Yu A</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepeshkin, S V</au><au>Baturin, V S</au><au>Uspenskii, Yu A</au><au>Oganov, Artem R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</atitle><jtitle>arXiv.org</jtitle><date>2018-12-17</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n<=15 and m<=20. The obtained map of Si-O cluster stability shows the existence of both expected (SiO2)n and unexpected (e.g. Si4O18) stable ("magic") clusters, which can be important for miscellaneous applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2158091078 |
source | Free E- Journals |
subjects | Atomic structure Clusters Composition Evolutionary algorithms First principles Global optimization Nanoclusters Silicon dioxide Structural stability |
title | Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simultaneous%20prediction%20of%20atomic%20structure%20and%20stability%20of%20nanoclusters%20in%20a%20wide%20area%20of%20compositions&rft.jtitle=arXiv.org&rft.au=Lepeshkin,%20S%20V&rft.date=2018-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2158091078%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158091078&rft_id=info:pmid/&rfr_iscdi=true |