Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions

We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-12
Hauptverfasser: Lepeshkin, S V, Baturin, V S, Uspenskii, Yu A, Oganov, Artem R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lepeshkin, S V
Baturin, V S
Uspenskii, Yu A
Oganov, Artem R
description We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2158091078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158091078</sourcerecordid><originalsourceid>FETCH-proquest_journals_21580910783</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBYMgWLT_EPBcSBNr61kU73qXmKa4Jc3WbIL497bgB3h6DDO8BcukUmXR7KRcsZyoF0LIfS2rSmXseYUhuai9xUR8DLYFEwE9x47riAMYTjEkE1OwXPt2Iv0AB_EzF157NC5RtIE4eK75G9qpC1bP2uAwIsH8Rxu27LQjm_92zbbn0-14KcaAr2Qp3ntMwU_qLsuqEYdS1I36r_oCB-lI8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158091078</pqid></control><display><type>article</type><title>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</title><source>Free E- Journals</source><creator>Lepeshkin, S V ; Baturin, V S ; Uspenskii, Yu A ; Oganov, Artem R</creator><creatorcontrib>Lepeshkin, S V ; Baturin, V S ; Uspenskii, Yu A ; Oganov, Artem R</creatorcontrib><description>We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n&lt;=15 and m&lt;=20. The obtained map of Si-O cluster stability shows the existence of both expected (SiO2)n and unexpected (e.g. Si4O18) stable ("magic") clusters, which can be important for miscellaneous applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic structure ; Clusters ; Composition ; Evolutionary algorithms ; First principles ; Global optimization ; Nanoclusters ; Silicon dioxide ; Structural stability</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lepeshkin, S V</creatorcontrib><creatorcontrib>Baturin, V S</creatorcontrib><creatorcontrib>Uspenskii, Yu A</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><title>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</title><title>arXiv.org</title><description>We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n&lt;=15 and m&lt;=20. The obtained map of Si-O cluster stability shows the existence of both expected (SiO2)n and unexpected (e.g. Si4O18) stable ("magic") clusters, which can be important for miscellaneous applications.</description><subject>Atomic structure</subject><subject>Clusters</subject><subject>Composition</subject><subject>Evolutionary algorithms</subject><subject>First principles</subject><subject>Global optimization</subject><subject>Nanoclusters</subject><subject>Silicon dioxide</subject><subject>Structural stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKwjAQBYMgWLT_EPBcSBNr61kU73qXmKa4Jc3WbIL497bgB3h6DDO8BcukUmXR7KRcsZyoF0LIfS2rSmXseYUhuai9xUR8DLYFEwE9x47riAMYTjEkE1OwXPt2Iv0AB_EzF157NC5RtIE4eK75G9qpC1bP2uAwIsH8Rxu27LQjm_92zbbn0-14KcaAr2Qp3ntMwU_qLsuqEYdS1I36r_oCB-lI8A</recordid><startdate>20181217</startdate><enddate>20181217</enddate><creator>Lepeshkin, S V</creator><creator>Baturin, V S</creator><creator>Uspenskii, Yu A</creator><creator>Oganov, Artem R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181217</creationdate><title>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</title><author>Lepeshkin, S V ; Baturin, V S ; Uspenskii, Yu A ; Oganov, Artem R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21580910783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic structure</topic><topic>Clusters</topic><topic>Composition</topic><topic>Evolutionary algorithms</topic><topic>First principles</topic><topic>Global optimization</topic><topic>Nanoclusters</topic><topic>Silicon dioxide</topic><topic>Structural stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Lepeshkin, S V</creatorcontrib><creatorcontrib>Baturin, V S</creatorcontrib><creatorcontrib>Uspenskii, Yu A</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepeshkin, S V</au><au>Baturin, V S</au><au>Uspenskii, Yu A</au><au>Oganov, Artem R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions</atitle><jtitle>arXiv.org</jtitle><date>2018-12-17</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n&lt;=15 and m&lt;=20. The obtained map of Si-O cluster stability shows the existence of both expected (SiO2)n and unexpected (e.g. Si4O18) stable ("magic") clusters, which can be important for miscellaneous applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2158091078
source Free E- Journals
subjects Atomic structure
Clusters
Composition
Evolutionary algorithms
First principles
Global optimization
Nanoclusters
Silicon dioxide
Structural stability
title Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simultaneous%20prediction%20of%20atomic%20structure%20and%20stability%20of%20nanoclusters%20in%20a%20wide%20area%20of%20compositions&rft.jtitle=arXiv.org&rft.au=Lepeshkin,%20S%20V&rft.date=2018-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2158091078%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158091078&rft_id=info:pmid/&rfr_iscdi=true