Simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions
We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a universal method for the large-scale prediction of the atomic structure of clusters. Our algorithm performs the joint evolutionary search for all clusters in a given area of the compositional space and takes advantage of structural similarities frequently observed in clusters of close compositions. The resulting speedup is up to 50 times compared to current methods. This enables the first-principles studies of multi-component clusters with full coverage of a wide range of compositions. As an example, we report an unprecedented first-principles global optimization of 315 SinOm clusters with n |
---|---|
ISSN: | 2331-8422 |