Pulsed Eddy Current Data Analysis for the Characterization of the Second-Layer Discontinuities
Pulsed eddy current (PEC) technique has been applied as a viable method to detect hidden discontinuities in metallic structures. Conventionally, selected time-domain features are employed to characterize the PEC data, such as peak value, lift-off point of intersection, rising point, crossing time, a...
Gespeichert in:
Veröffentlicht in: | Journal of nondestructive evaluation 2019-03, Vol.38 (1), p.1-8, Article 7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulsed eddy current (PEC) technique has been applied as a viable method to detect hidden discontinuities in metallic structures. Conventionally, selected time-domain features are employed to characterize the PEC data, such as peak value, lift-off point of intersection, rising point, crossing time, and differential time to peak. The research presented in this paper continues the effort in a previous study on detecting the radial cracks starting from the fastener hole in second layer of a two-layer mock-up aircraft structure. A large diameter excitation coil with ferrite core is used to induce a strong pulse, and the magnetic field generated by eddy current is detected by Hall sensors. Instead of analyzing the limited time-domain features, we propose using machine learning methods to interpret the raw data without feature extraction. Thus, the second-layer discontinuities can be characterized presumably with all the information contained in a waveform. An automated detection framework is proposed in this paper and the experimental results demonstrate the effectiveness of the proposed method. |
---|---|
ISSN: | 0195-9298 1573-4862 |
DOI: | 10.1007/s10921-018-0545-6 |