Spatially almost periodic complex‐valued solutions of the Boussinesq equations
We extend several ideas developed in E. Dinaburg, Ya. G. Sinai and D. Li's papers (see Lemma , Remark , Lemma , Remark , Remark ) and construct a unique mild solution (u,θ) of the system satisfying with spatially almost periodic initial data (u0,θ0)∈FM0,σ(R3,C3)×FM0(R3). Moreover, (u,θ) is al...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-01, Vol.42 (2), p.620-655 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend several ideas developed in E. Dinaburg, Ya. G. Sinai and D. Li's papers (see Lemma , Remark , Lemma , Remark , Remark ) and construct a unique mild solution (u,θ) of the system satisfying with spatially almost periodic initial data
(u0,θ0)∈FM0,σ(R3,C3)×FM0(R3). Moreover, (u,θ) is also a spatially almost periodic complex‐valued mild solution. Assume further that
(u0,θ0)∈FM0,σ∞(R3,C3)×FM0∞(R3) (see Definition ). Then, we overcome the difficulty in the work of Y. Giga et al. (see Introduction below) and show that the above mild solution also satisfies for all
S∈N. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.5366 |