Spatially almost periodic complex‐valued solutions of the Boussinesq equations

We extend several ideas developed in E. Dinaburg, Ya. G. Sinai and D. Li's papers (see Lemma , Remark  , Lemma , Remark  , Remark ) and construct a unique mild solution (u,θ) of the system satisfying with spatially almost periodic initial data (u0,θ0)∈FM0,σ(R3,C3)×FM0(R3). Moreover, (u,θ) is al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-01, Vol.42 (2), p.620-655
1. Verfasser: Li, Chengrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend several ideas developed in E. Dinaburg, Ya. G. Sinai and D. Li's papers (see Lemma , Remark  , Lemma , Remark  , Remark ) and construct a unique mild solution (u,θ) of the system satisfying with spatially almost periodic initial data (u0,θ0)∈FM0,σ(R3,C3)×FM0(R3). Moreover, (u,θ) is also a spatially almost periodic complex‐valued mild solution. Assume further that (u0,θ0)∈FM0,σ∞(R3,C3)×FM0∞(R3) (see Definition ). Then, we overcome the difficulty in the work of Y. Giga et al. (see Introduction below) and show that the above mild solution also satisfies for all S∈N.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5366