Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: A density functional theory investigation

Heteroatom doped-graphene is a potential candidate as an anode material in sodium-ion batteries (SIBs). However, one of the major issues holding back its development is that a complete understanding of the doping effects accounting for the Na-ion storage of heteroatom-doped graphene has remained elu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2018-12, Vol.140, p.276-285
Hauptverfasser: Wasalathilake, Kimal Chandula, Ayoko, Godwin A., Yan, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heteroatom doped-graphene is a potential candidate as an anode material in sodium-ion batteries (SIBs). However, one of the major issues holding back its development is that a complete understanding of the doping effects accounting for the Na-ion storage of heteroatom-doped graphene has remained elusive. In this work, first principles calculations have been conducted to systematically investigate the electronic and geometric effects in various heteroatom-doped graphene. Graphene doping with pyridinic-N, pyrrolic-N, F and B improves the electrochemical Na storage due to the electronic effect which originates from electron deficient sites (i.e. defects or electron deficient atoms). On the other hand, P doping improves the Na storage ability of graphene due to the geometric effect caused by bond length mismatch. In contrast, the introduction of graphitic-N and S into graphene is inefficient for Na storage because of their inability to accept electrons from Na. Interestingly, the diffusion energy barriers obtained for Na on doped graphene are lower than that for the pristine graphene. Furthermore, co-doping strategy is predicted to achieve even better Na storage capacity due to the synergistic effect. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2018.08.071