Empirical analysis of biodiesel effect on the automobile properties of diesel engine: A case study of olive and soya biomass
Laboratory evidence of cyclic breaking in biodiesel products was recently reported. This study seeks to investigative biodiesel production from olive and soya biomass along recent scientific discovery. Research focus was on the analysis of mixed fossil‐biodiesel samples on diesel engine. The mixed b...
Gespeichert in:
Veröffentlicht in: | Energy science & engineering 2018-12, Vol.6 (6), p.693-705 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laboratory evidence of cyclic breaking in biodiesel products was recently reported. This study seeks to investigative biodiesel production from olive and soya biomass along recent scientific discovery. Research focus was on the analysis of mixed fossil‐biodiesel samples on diesel engine. The mixed blend of soya (B10 and B20) and olive (B10 and B20) were used in this study. The TD 200 diesel engine was used to examine the automobile implications of adopting olive and soya biodiesels for automobile applications. More so, the research seeks to know the effect of cyclic breaking on engine performance. Aside the normal parameters like torque, rotational speed, differential pressure, operational temperature, and power generated in the engine, five additional factors were considered that is sound of engine, power generated by engine in horse power, thermal efficiency, normal engine efficiency, and brake mean effect pressure. Most parameters show the effect of cyclic breaking in the mixed olive and soya biodiesel when the engine operates beyond 20 minutes. The temperature of the engine is increased by 41% and 29% for olive B10 and soya B10, respectively. The maximum engine efficiencies when pure diesel, Soya B10, and Olive B10 (at specific heat ratio of 8.5) were optimized was 0.44, 0.709, and 0.616, respectively. The shortcoming of the tested biodiesel products was highlighted in the research. The rate of cyclic breaking in biodiesel is recommended for further study.
It seeks to find the best biofuel production for automobile engine application. |
---|---|
ISSN: | 2050-0505 2050-0505 |
DOI: | 10.1002/ese3.244 |