Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review

•Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2019-03, Vol.118, p.272-299
Hauptverfasser: Do, Hai Ha, Prasad, PWC, Maag, Angelika, Alsadoon, Abeer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue
container_start_page 272
container_title Expert systems with applications
container_volume 118
creator Do, Hai Ha
Prasad, PWC
Maag, Angelika
Alsadoon, Abeer
description •Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should be considered in future studies. The increasing volume of user-generated content on the web has made sentiment analysis an important tool for the extraction of information about the human emotional state. A current research focus for sentiment analysis is the improvement of granularity at aspect level, representing two distinct aims: aspect extraction and sentiment classification of product reviews and sentiment classification of target-dependent tweets. Deep learning approaches have emerged as a prospect for achieving these aims with their ability to capture both syntactic and semantic features of text without requirements for high-level feature engineering, as is the case in earlier methods. In this article, we aim to provide a comparative review of deep learning for aspect-based sentiment analysis to place different approaches in context.
doi_str_mv 10.1016/j.eswa.2018.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157464038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417418306456</els_id><sourcerecordid>2157464038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c78188116561a1600e906255a3ccaaf2aaff83981b1ecacfee183da7eec2179c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz62Zpk1S8VJXXYUFwT_nENOppOy2Nam77Lc3ZT17mBl4vDfM_Ai5BJYCA3Hdphh2Js0YqCikjPEjMgMleSJkyY_JjJWFTHKQ-Sk5C6FlDCRjckaW94gDXaHxneu-aNN7WoUB7ZjcmYA1fcNudJvYaNWZ9T64cEMruug3g_FmdFukr7h1uDsnJ41ZB7z4m3Py8fjwvnhKVi_L50W1Siwv8zGxUoFSAKIQYEAwhiUTWVEYbq0xTRarUbxU8AlojW0QQfHaSESbgSwtn5Orw97B998_GEbd9j8-nhZ0BoXMRc64iq7s4LK-D8FjowfvNsbvNTA9AdOtnoDpCdikRWAxdHsIYbw__uR1sA47i7XzEYiue_df_Bc4e3N2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157464038</pqid></control><display><type>article</type><title>Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review</title><source>Access via ScienceDirect (Elsevier)</source><creator>Do, Hai Ha ; Prasad, PWC ; Maag, Angelika ; Alsadoon, Abeer</creator><creatorcontrib>Do, Hai Ha ; Prasad, PWC ; Maag, Angelika ; Alsadoon, Abeer</creatorcontrib><description>•Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should be considered in future studies. The increasing volume of user-generated content on the web has made sentiment analysis an important tool for the extraction of information about the human emotional state. A current research focus for sentiment analysis is the improvement of granularity at aspect level, representing two distinct aims: aspect extraction and sentiment classification of product reviews and sentiment classification of target-dependent tweets. Deep learning approaches have emerged as a prospect for achieving these aims with their ability to capture both syntactic and semantic features of text without requirements for high-level feature engineering, as is the case in earlier methods. In this article, we aim to provide a comparative review of deep learning for aspect-based sentiment analysis to place different approaches in context.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2018.10.003</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Classification ; Cognition &amp; reasoning ; Data mining ; Deep learning ; Expert systems ; Learning ; Neural networks ; Sentiment analysis ; User generated content</subject><ispartof>Expert systems with applications, 2019-03, Vol.118, p.272-299</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c78188116561a1600e906255a3ccaaf2aaff83981b1ecacfee183da7eec2179c3</citedby><cites>FETCH-LOGICAL-c394t-c78188116561a1600e906255a3ccaaf2aaff83981b1ecacfee183da7eec2179c3</cites><orcidid>0000-0002-3007-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2018.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Do, Hai Ha</creatorcontrib><creatorcontrib>Prasad, PWC</creatorcontrib><creatorcontrib>Maag, Angelika</creatorcontrib><creatorcontrib>Alsadoon, Abeer</creatorcontrib><title>Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review</title><title>Expert systems with applications</title><description>•Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should be considered in future studies. The increasing volume of user-generated content on the web has made sentiment analysis an important tool for the extraction of information about the human emotional state. A current research focus for sentiment analysis is the improvement of granularity at aspect level, representing two distinct aims: aspect extraction and sentiment classification of product reviews and sentiment classification of target-dependent tweets. Deep learning approaches have emerged as a prospect for achieving these aims with their ability to capture both syntactic and semantic features of text without requirements for high-level feature engineering, as is the case in earlier methods. In this article, we aim to provide a comparative review of deep learning for aspect-based sentiment analysis to place different approaches in context.</description><subject>Classification</subject><subject>Cognition &amp; reasoning</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Expert systems</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>User generated content</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz62Zpk1S8VJXXYUFwT_nENOppOy2Nam77Lc3ZT17mBl4vDfM_Ai5BJYCA3Hdphh2Js0YqCikjPEjMgMleSJkyY_JjJWFTHKQ-Sk5C6FlDCRjckaW94gDXaHxneu-aNN7WoUB7ZjcmYA1fcNudJvYaNWZ9T64cEMruug3g_FmdFukr7h1uDsnJ41ZB7z4m3Py8fjwvnhKVi_L50W1Siwv8zGxUoFSAKIQYEAwhiUTWVEYbq0xTRarUbxU8AlojW0QQfHaSESbgSwtn5Orw97B998_GEbd9j8-nhZ0BoXMRc64iq7s4LK-D8FjowfvNsbvNTA9AdOtnoDpCdikRWAxdHsIYbw__uR1sA47i7XzEYiue_df_Bc4e3N2</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Do, Hai Ha</creator><creator>Prasad, PWC</creator><creator>Maag, Angelika</creator><creator>Alsadoon, Abeer</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3007-687X</orcidid></search><sort><creationdate>20190315</creationdate><title>Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review</title><author>Do, Hai Ha ; Prasad, PWC ; Maag, Angelika ; Alsadoon, Abeer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c78188116561a1600e906255a3ccaaf2aaff83981b1ecacfee183da7eec2179c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Cognition &amp; reasoning</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Expert systems</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>User generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Hai Ha</creatorcontrib><creatorcontrib>Prasad, PWC</creatorcontrib><creatorcontrib>Maag, Angelika</creatorcontrib><creatorcontrib>Alsadoon, Abeer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Hai Ha</au><au>Prasad, PWC</au><au>Maag, Angelika</au><au>Alsadoon, Abeer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review</atitle><jtitle>Expert systems with applications</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>118</volume><spage>272</spage><epage>299</epage><pages>272-299</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should be considered in future studies. The increasing volume of user-generated content on the web has made sentiment analysis an important tool for the extraction of information about the human emotional state. A current research focus for sentiment analysis is the improvement of granularity at aspect level, representing two distinct aims: aspect extraction and sentiment classification of product reviews and sentiment classification of target-dependent tweets. Deep learning approaches have emerged as a prospect for achieving these aims with their ability to capture both syntactic and semantic features of text without requirements for high-level feature engineering, as is the case in earlier methods. In this article, we aim to provide a comparative review of deep learning for aspect-based sentiment analysis to place different approaches in context.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2018.10.003</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-3007-687X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2019-03, Vol.118, p.272-299
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2157464038
source Access via ScienceDirect (Elsevier)
subjects Classification
Cognition & reasoning
Data mining
Deep learning
Expert systems
Learning
Neural networks
Sentiment analysis
User generated content
title Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Aspect-Based%20Sentiment%20Analysis:%20A%20Comparative%20Review&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Do,%20Hai%20Ha&rft.date=2019-03-15&rft.volume=118&rft.spage=272&rft.epage=299&rft.pages=272-299&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2018.10.003&rft_dat=%3Cproquest_cross%3E2157464038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157464038&rft_id=info:pmid/&rft_els_id=S0957417418306456&rfr_iscdi=true