Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review

•Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2019-03, Vol.118, p.272-299
Hauptverfasser: Do, Hai Ha, Prasad, PWC, Maag, Angelika, Alsadoon, Abeer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Over 40 models for aspect-based sentiment analysis are summarized and classified.•Deep learning methods use fewer parameters but achieved comparative performance.•Deep learning is still in infancy, given challenges in data, domains and languages.•A task-combined and concept-centric approach should be considered in future studies. The increasing volume of user-generated content on the web has made sentiment analysis an important tool for the extraction of information about the human emotional state. A current research focus for sentiment analysis is the improvement of granularity at aspect level, representing two distinct aims: aspect extraction and sentiment classification of product reviews and sentiment classification of target-dependent tweets. Deep learning approaches have emerged as a prospect for achieving these aims with their ability to capture both syntactic and semantic features of text without requirements for high-level feature engineering, as is the case in earlier methods. In this article, we aim to provide a comparative review of deep learning for aspect-based sentiment analysis to place different approaches in context.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2018.10.003