Singular Points of Complex Algebraic Hypersurfaces

We consider a complex hypersurface V given by an algebraic equation in k unknowns, where the set A ⊂ Zk of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in (C \ 0)k parametrized by its coefficients a = (aα)α∈A ∈ CA. We prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Siberian Federal University. Mathematics & Physics 2018-01, Vol.11 (6), p.670-679
Hauptverfasser: Antipova, Irina A, Mikhalkin, Evgeny N, Tsikh, Avgust K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a complex hypersurface V given by an algebraic equation in k unknowns, where the set A ⊂ Zk of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in (C \ 0)k parametrized by its coefficients a = (aα)α∈A ∈ CA. We prove that when A generates the lattice Zk as a group, then over the set of regular points a in the A-discriminantal set, the singular points of V admit a rational expression in a.
ISSN:1997-1397
2313-6022
DOI:10.17516/1997-1397-2018-11-6-670-679