Singular Points of Complex Algebraic Hypersurfaces
We consider a complex hypersurface V given by an algebraic equation in k unknowns, where the set A ⊂ Zk of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in (C \ 0)k parametrized by its coefficients a = (aα)α∈A ∈ CA. We prove...
Gespeichert in:
Veröffentlicht in: | Journal of Siberian Federal University. Mathematics & Physics 2018-01, Vol.11 (6), p.670-679 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a complex hypersurface V given by an algebraic equation in k unknowns, where the set A ⊂ Zk of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in (C \ 0)k parametrized by its coefficients a = (aα)α∈A ∈ CA. We prove that when A generates the lattice Zk as a group, then over the set of regular points a in the A-discriminantal set, the singular points of V admit a rational expression in a. |
---|---|
ISSN: | 1997-1397 2313-6022 |
DOI: | 10.17516/1997-1397-2018-11-6-670-679 |