Ca2+ sparks in embryonic mouse skeletal muscle selectively deficient in dihydropyridine receptor aplha(1S) or beta(1a) subunits
Ca2+ sparks are miniature Ca2+ release events from the sarcoplasmic reticulum of muscle cells. We examined the kinetics of Ca2+ sparks in excitation-contraction uncoupled myotubes from mouse embryos lacking the beta1 subunit and mdg embryos lacking the alpha1S subunit of the dihydropyridine receptor...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1999-02, Vol.76 (2), p.657 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ca2+ sparks are miniature Ca2+ release events from the sarcoplasmic reticulum of muscle cells. We examined the kinetics of Ca2+ sparks in excitation-contraction uncoupled myotubes from mouse embryos lacking the beta1 subunit and mdg embryos lacking the alpha1S subunit of the dihydropyridine receptor. Ca2+ sparks occurred spontaneously without a preferential location in the myotube. Ca2+ sparks had a broad distribution of spatial and temporal dimensions with means much larger than those reported in adult muscle. In normal myotubes (n = 248 sparks), the peak fluorescence ratio, DeltaF/Fo, was 1.6 +/- 0.6 (mean +/- SD), the full spatial width at half-maximal fluorescence (FWHM) was 3.6 +/- 1.1 micrometer and the full duration of individual sparks, Deltat, was 145 +/- 64 ms. In beta-null myotubes (n = 284 sparks), DeltaF/Fo = 1.9 +/- 0.4, FWHM = 5.1 +/- 1.5 micrometer, and Deltat = 168 +/- 43 ms. In mdg myotubes (n = 426 sparks), DeltaF/Fo = 1 +/- 0.5, the FWHM = 2.5 +/- 1.1 micrometer, and Deltat = 97 +/- 50 ms. Thus, Ca2+ sparks in mdg myotubes were significantly dimmer, smaller, and briefer than Ca2+ sparks in normal or beta-deficient myotubes. In all cell types, the frequency of sparks, DeltaF/Fo, and FWHM were gradually decreased by tetracaine and increased by caffeine. Both results confirmed that Ca2+ sparks of resting embryonic muscle originated from spontaneous openings of ryanodine receptor channels. We conclude that dihydropyridine receptor alpha1S and beta1 subunits participate in the control of Ca2+ sparks in embryonic skeletal muscle. However, excitation-contraction coupling is not essential for Ca2+ spark formation in these cells. |
---|---|
ISSN: | 0006-3495 1542-0086 |