Sub-hertz fundamental linewidth photonic integrated Brillouin laser

Spectrally pure lasers, the heart of precision high-end scientific and commercial applications, are poised to make the leap from the laboratory to integrated circuits. Translating this performance to integrated photonics will dramatically reduce cost and footprint for applications such as ultrahigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2019-01, Vol.13 (1), p.60-67
Hauptverfasser: Gundavarapu, Sarat, Brodnik, Grant M., Puckett, Matthew, Huffman, Taran, Bose, Debapam, Behunin, Ryan, Wu, Jianfeng, Qiu, Tiequn, Pinho, Cátia, Chauhan, Nitesh, Nohava, Jim, Rakich, Peter T., Nelson, Karl D., Salit, Mary, Blumenthal, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spectrally pure lasers, the heart of precision high-end scientific and commercial applications, are poised to make the leap from the laboratory to integrated circuits. Translating this performance to integrated photonics will dramatically reduce cost and footprint for applications such as ultrahigh capacity fibre and data centre networks, atomic clocks and sensing. Despite the numerous applications, integrated lasers currently suffer from large linewidth. Brillouin lasers, with their unique properties, offer an intriguing solution, yet bringing their performance to integrated platforms has remained elusive. Here, we demonstrate a sub-hertz (~0.7 Hz) fundamental linewidth Brillouin laser in an integrated Si 3 N 4 waveguide platform that translates advantages of non-integrated designs to the chip scale. This silicon-foundry-compatible design supports low loss from 405 to 2,350 nm and can be integrated with other components. Single- and multiple-frequency output operation provides a versatile low phase-noise solution. We highlight this by demonstrating an optical gyroscope and a low-phase-noise photonic oscillator. Brillouin lasing with 0.7 Hz fundamental linewidth is observed by optically exciting a monolithic bus–ring Si 3 N 4 waveguide resonator. The Brillouin laser is applied to an optical gyroscope and a low phase-noise photonic microwave oscillator.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-018-0313-2