A new vehicle path-following strategy of the steering driver model using general predictive control method

In order to build an accurate and effective model, simulation of driver behavior is absolutely essential for the development of advanced driver assistance systems and the current assessment of vehicle handling stability. The purpose of the proposed active steering control is to assist the driver to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2018-12, Vol.232 (24), p.4578-4587
Hauptverfasser: Cao, Yang, Cao, Jianyong, Yu, Fan, Luo, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to build an accurate and effective model, simulation of driver behavior is absolutely essential for the development of advanced driver assistance systems and the current assessment of vehicle handling stability. The purpose of the proposed active steering control is to assist the driver to follow the desired path, especially in situations of the vehicle under strong external disturbance, distracted driver, or other unforeseen circumstances that can cause deviations. Based on the preview optimal simple artificial neural network driver model, an active steering system using general predictive control method is established. In order to improve the path-following capability of vehicles under disturbances, a general predictive controller, with the deviation between the vehicles’ actual and desired lateral positons as inputs and with the corrective steering wheel angle as outputs, is developed to follow the desired path. Meanwhile, adapting recursion least square method with the forgetting factor to estimate the parameters of the controlled auto-regressive and integrated moving average model of the vehicle is designed. The proposed vehicle path-following control system is evaluated in some typical conditions (e.g. under strong crosswind condition in standard double-lane-change, etc.). Simulation results and analysis have verified that this new vehicle path-following strategy, given by general predictive controller, is capable of capturing driver’s steering behavior and the amended driver steering angle can improve the dynamic performance of vehicle under some external disturbances.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406216685123