Laplacian in the hyperbolic space Hn and linearization stability of the Einstein equation for Robertson-Walker models
We prove that some operators related to the rough Laplacian in the hyperbolic space give isomorphisms between Sobolev spaces of 1-forms. By using these results we prove that the Einstein equation of the hyperbolic Robertson-Walker cosmological model is linearization stable. We also study the lineari...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2005-07, Vol.46 (7), p.Q1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that some operators related to the rough Laplacian in the hyperbolic space give isomorphisms between Sobolev spaces of 1-forms. By using these results we prove that the Einstein equation of the hyperbolic Robertson-Walker cosmological model is linearization stable. We also study the linearization stability for Robertson-Walker models, V=S x I, with S compact, complete, having either constant negative or zero curvature. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0022-2488 1089-7658 |