Laplacian in the hyperbolic space Hn and linearization stability of the Einstein equation for Robertson-Walker models

We prove that some operators related to the rough Laplacian in the hyperbolic space give isomorphisms between Sobolev spaces of 1-forms. By using these results we prove that the Einstein equation of the hyperbolic Robertson-Walker cosmological model is linearization stable. We also study the lineari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2005-07, Vol.46 (7), p.Q1
Hauptverfasser: Bruna, Lluis, Girbau, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that some operators related to the rough Laplacian in the hyperbolic space give isomorphisms between Sobolev spaces of 1-forms. By using these results we prove that the Einstein equation of the hyperbolic Robertson-Walker cosmological model is linearization stable. We also study the linearization stability for Robertson-Walker models, V=S x I, with S compact, complete, having either constant negative or zero curvature. [PUBLICATION ABSTRACT]
ISSN:0022-2488
1089-7658