The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes
In this paper for a class of symmetric multiparty pure states, we consider a conjecture related to the geometric measure of entanglement: “for a symmetric pure state, the closest product state in terms of the fidelity can be chosen as a symmetric product state.” We show that this conjecture is true...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2009-12, Vol.50 (12), p.122104-122104-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper for a class of symmetric multiparty pure states, we consider a conjecture related to the geometric measure of entanglement: “for a symmetric pure state, the closest product state in terms of the fidelity can be chosen as a symmetric product state.” We show that this conjecture is true for symmetric pure states whose amplitudes are all non-negative in a computational basis. The more general conjecture is still open. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3271041 |