Synthesis, Characterization and Properties of Forsterite Refractory Produced from Thai Talc and Magnesite

This paper reports the synthesis, characterizations, microstructure and properties of forsterite powder produced in Thailand from talc and magnesite as raw materials by using mechanical activation with subsequent calcination. The synthesis forsterite powder were mixed by using talc and magnesite at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.940, p.46-50
Hauptverfasser: Kullatham, Surapattanapong, Thiansem, Sakdiphon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports the synthesis, characterizations, microstructure and properties of forsterite powder produced in Thailand from talc and magnesite as raw materials by using mechanical activation with subsequent calcination. The synthesis forsterite powder were mixed by using talc and magnesite at 1:5 mole ratio. The maximum milling time was 24 h in a planetary zirconia ball mill. Afterward, the mixtures were calcined in an electric furnace for 1 h at 900, 1000, 1100, 1200 and 1300°C respectively. The synthesized powder was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and physical properties. Results of the physical properties of synthesized forsterite showed an increased in density as the calcining temperature increased. In contrast, porosity was decreased with an increase of the calcining temperature. Therefore, forsterite that was calcined at 1300°C provided the best results which were 2.96 g/cm3 of true density and 15.41% of true porosity. Results of XRD of synthesized powder indicated that the forsterite crystallization was constant for which sharpen appeared after 5 h of mechanical activation. Fraction of forsterite was appeared after being calcined at 1000°C for 1 h with an increasing of calcination temperature, the fraction of forsterite phase increased. Based on the mentioned characteristics, the forsterite produced from Thai talc and magnesite exhibited properties of an insulator and can potentially be used as refractory devices.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.940.46