Asymptotics for models of non‐stationary diffusion in domains with a surface distribution of obstacles

We consider a time‐dependent model for the diffusion of a substance through an incompressible fluid in a perforated domain Ωϵ, Ωϵ⊂Ω⊂Rn with n = 3,4. The fluid flows in a domain containing a periodical set of “obstacles” (Ω\Ωϵ) placed along an inner (n − 1)‐dimensional manifold Σ⊂Ω. The size of the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-01, Vol.42 (1), p.403-413
Hauptverfasser: Gómez, Delfina, Lobo, Miguel, Pérez‐Martínez, María‐Eugenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a time‐dependent model for the diffusion of a substance through an incompressible fluid in a perforated domain Ωϵ, Ωϵ⊂Ω⊂Rn with n = 3,4. The fluid flows in a domain containing a periodical set of “obstacles” (Ω\Ωϵ) placed along an inner (n − 1)‐dimensional manifold Σ⊂Ω. The size of the obstacles is much smaller than the size of the characteristic period ϵ. An advection term appears in the partial differential equation linking the fluid velocity with the concentration, while we assume a nonlinear adsorption law on the boundary of the obstacles. This law involves a monotone nonlinear function σ of the concentration and a large adsorption parameter. The “critical adsorption parameter” depends on the size of the obstacles , and, for different sizes, we derive the time‐dependent homogenized models. These models contain a “strange term” in the transmission conditions on Σ, which is a nonlinear function and inherits the properties of σ. The case in which the fluid velocity and the concentration do not interact is also considered for n ≥ 3.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5323