Optimal Stopping Under Uncertainty in Drift and Jump Intensity

This paper studies the optimal stopping problem in the presence of model uncertainty (ambiguity). We develop a numerically implementable method to solve this problem in a general setting, allowing for general time-consistent ambiguity-averse preferences and general payoff processes driven by jump di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2018-11, Vol.43 (4), p.1177-1209
Hauptverfasser: Krätschmer, Volker, Ladkau, Marcel, Laeven, Roger J. A., Schoenmakers, John G. M., Stadje, Mitja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the optimal stopping problem in the presence of model uncertainty (ambiguity). We develop a numerically implementable method to solve this problem in a general setting, allowing for general time-consistent ambiguity-averse preferences and general payoff processes driven by jump diffusions. Our method consists of three steps. First, we construct a suitable Doob martingale associated with the solution to the optimal stopping problem using backward stochastic calculus. Second, we employ this martingale to construct an approximated upper bound to the solution using duality. Third, we introduce backward-forward simulation to obtain a genuine upper bound to the solution, which converges to the true solution asymptotically. We also provide asymptotically optimal exercise rules. We analyze the limiting behavior and convergence properties of our method. We illustrate the generality and applicability of our method and the potentially significant impact of ambiguity to optimal stopping in a few examples.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.2017.0899