Comparative performance analysis of the Cumulative Sum chart and the Shiryaev‐Roberts procedure for detecting changes in autocorrelated data
We consider the problem of quickest changepoint detection where the observations form a first‐order autoregressive (AR(1)) process driven by temporally independent standard white Gaussian noise. Subject to possible change are both the drift of the AR(1) process (μ) and its correlation coefficient (λ...
Gespeichert in:
Veröffentlicht in: | Applied stochastic models in business and industry 2018-11, Vol.34 (6), p.922-948 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of quickest changepoint detection where the observations form a first‐order autoregressive (AR(1)) process driven by temporally independent standard white Gaussian noise. Subject to possible change are both the drift of the AR(1) process (μ) and its correlation coefficient (λ), which are both known. The change is abrupt and persistent, and of known magnitude, with |λ| |
---|---|
ISSN: | 1524-1904 1526-4025 |
DOI: | 10.1002/asmb.2372 |