Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients
We develop a new compact scheme for the second-order PDE (parabolic and Schrödinger type) with a variable time-independent coefficient. It has a higher order and smaller error than classic implicit scheme. The Dirichlet and Neumann boundary problems are considered. The relative finite-difference ope...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2018-12, Vol.375, p.1451-1468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a new compact scheme for the second-order PDE (parabolic and Schrödinger type) with a variable time-independent coefficient. It has a higher order and smaller error than classic implicit scheme. The Dirichlet and Neumann boundary problems are considered. The relative finite-difference operator is almost self-adjoint.
•High order compact scheme for 1D parabolic and Schrodinger-type equations with variable coefficients is constructed.•The approximation order was confirmed by various numerical experiments.•The Richardson extrapolation method improves the approximation order up to 6th.•High-order Neumann boundary conditions approximation are constructed. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2018.06.079 |