Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients

We develop a new compact scheme for the second-order PDE (parabolic and Schrödinger type) with a variable time-independent coefficient. It has a higher order and smaller error than classic implicit scheme. The Dirichlet and Neumann boundary problems are considered. The relative finite-difference ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-12, Vol.375, p.1451-1468
Hauptverfasser: Gordin, Vladimir A., Tsymbalov, Evgenii A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new compact scheme for the second-order PDE (parabolic and Schrödinger type) with a variable time-independent coefficient. It has a higher order and smaller error than classic implicit scheme. The Dirichlet and Neumann boundary problems are considered. The relative finite-difference operator is almost self-adjoint. •High order compact scheme for 1D parabolic and Schrodinger-type equations with variable coefficients is constructed.•The approximation order was confirmed by various numerical experiments.•The Richardson extrapolation method improves the approximation order up to 6th.•High-order Neumann boundary conditions approximation are constructed.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2018.06.079