Laboratory Insights Into the Effect of Sediment‐Hosted Methane Hydrate Morphology on Elastic Wave Velocity From Time‐Lapse 4‐D Synchrotron X‐Ray Computed Tomography

A better understanding of the effect of methane hydrate morphology and saturation on elastic wave velocity of hydrate‐bearing sediments is needed for improved seafloor hydrate resource and geohazard assessment. We conducted X‐ray synchrotron time‐lapse 4‐D imaging of methane hydrate evolution in Lei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2018-11, Vol.19 (11), p.4502-4521
Hauptverfasser: Sahoo, Sourav K., Madhusudhan, B. N., Marín‐Moreno, Hector, North, Laurence J., Ahmed, Sharif, Falcon‐Suarez, Ismael Himar, Minshull, Tim A., Best, Angus I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A better understanding of the effect of methane hydrate morphology and saturation on elastic wave velocity of hydrate‐bearing sediments is needed for improved seafloor hydrate resource and geohazard assessment. We conducted X‐ray synchrotron time‐lapse 4‐D imaging of methane hydrate evolution in Leighton Buzzard sand and compared the results to analogous hydrate formation and dissociation experiments in Berea sandstone, on which we measured ultrasonic P and S wave velocities and electrical resistivity. The imaging experiment showed that initially hydrate envelops gas bubbles and methane escapes from these bubbles via rupture of hydrate shells, leading to smaller bubbles. This process leads to a transition from pore‐floating to pore‐bridging hydrate morphology. Finally, pore‐bridging hydrate coalesces with that from adjacent pores creating an interpore hydrate framework that interlocks the sand grains. We also observed isolated pockets of gas within hydrate. We observed distinct changes in gradient of P and S wave velocities increase with hydrate saturation. Informed by a theoretical model of idealized hydrate morphology and its influence on elastic wave velocity, we were able to link velocity changes to hydrate morphology progression from initial pore‐floating, then pore‐bridging, to an interpore hydrate framework. The latter observation is the first evidence of this type of hydrate morphology and its measurable effect on velocity. We found anomalously low S wave velocity compared to the effective medium model, probably caused by the presence of a water film between hydrate and mineral grains. Key Points We observe the evolution of methane hydrate morphology in porous media by 4‐D X‐ray CT imaging and laboratory geophysical experiments X‐ray CT shows that hydrate morphology evolves from an initial pore‐floating, to pore‐bridging, to a final interpore hydrate framework We found anomalously low S wave velocity probably caused by the presence of water films between hydrate and host grains
ISSN:1525-2027
1525-2027
DOI:10.1029/2018GC007710