Canonical Variate Dissimilarity Analysis for Process Incipient Fault Detection

Early detection of incipient faults in industrial processes is increasingly becoming important, as these faults can slowly develop into serious abnormal events, an emergency situation, or even failure of critical equipment. Multivariate statistical process monitoring methods are currently establishe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-12, Vol.14 (12), p.5308-5315
Hauptverfasser: Pilario, Karl Ezra Salgado, Cao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early detection of incipient faults in industrial processes is increasingly becoming important, as these faults can slowly develop into serious abnormal events, an emergency situation, or even failure of critical equipment. Multivariate statistical process monitoring methods are currently established for abrupt fault detection. Among these, the canonical variate analysis (CVA) was proven to be effective for dynamic process monitoring. However, the traditional CVA indices may not be sensitive enough for incipient faults. In this work, an extension of CVA, called the canonical variate dissimilarity analysis (CVDA), is proposed for process incipient fault detection in nonlinear dynamic processes under varying operating conditions. To handle the non-Gaussian distributed data, the kernel density estimation was used for computing detection limits. A CVA dissimilarity based index has been demonstrated to outperform traditional CVA indices and other dissimilarity-based indices, namely the dissimilarity analysis, recursive dynamic transformed component statistical analysis, and generalized canonical correlation analysis, in terms of sensitivity when tested on slowly developing multiplicative and additive faults in a continuous stirred-tank reactor under closed-loop control and varying operating conditions.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2018.2810822