Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach

This paper studies the codesign optimization approach to determine how to optimally adapt automatic control of an intelligent electric vehicle to driving styles. A cyber-physical system (CPS)-based framework is proposed for codesign optimization of the plant and controller parameters for an automate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-04, Vol.66 (4), p.2965-2975
Hauptverfasser: Chen Lv, Xiaosong Hu, Sangiovanni-Vincentelli, Alberto, Yutong Li, Martinez, Clara Marina, Dongpu Cao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the codesign optimization approach to determine how to optimally adapt automatic control of an intelligent electric vehicle to driving styles. A cyber-physical system (CPS)-based framework is proposed for codesign optimization of the plant and controller parameters for an automated electric vehicle, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. Driving style recognition algorithm is developed using unsupervised machine learning and validated via vehicle experiments. Adaptive control algorithms are designed for three driving styles with different protocol selections. Performance exploration method is presented. Parameter optimizations are implemented based on the defined objective functions. Test results show that an automated vehicle with optimized plant and controller can perform its tasks well under aggressive, moderate, and conservative driving styles, further improving the overall performance. The results validate the feasibility and effectiveness of the proposed CPS-based codesign optimization approach.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2018.2850031