Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers
In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventiona...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2019-04, Vol.66 (4), p.2756-2765 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2765 |
---|---|
container_issue | 4 |
container_start_page | 2756 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 66 |
creator | Ramezani, Ali Farhangi, Shahrokh Iman-Eini, Hossein Farhangi, Babak Rahimi, Ramin Moradi, Gholam Reza |
description | In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventional methods only consider the full-load condition to design the resonant network; in contrast, the proposed method employs a time-weighted average efficiency for different coupling conditions to achieve high efficiency over a wide load range including light-load and no-load operation. The resonant network is tuned to realize zero voltage switching for the primary side inverter. Moreover, a finite-element analysis is performed to calculate self- and mutual inductances as well as core losses for magnetic couplers. In order to validate the feasibility of the proposed design, a 1 kW/85 kHz prototype with circular magnetic couplers is implemented. According to simulations and experiments, flat profiles for both efficiency and output voltage against output power variations are achieved. Experimental results demonstrate a 94.8% peak efficiency for the full-load operation. |
doi_str_mv | 10.1109/TIE.2018.2840502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2151465648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8370777</ieee_id><sourcerecordid>2151465648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-fec46aad807ae1da3378d04552a300a809bae31cc2e5c49fac980db1b3eb36a33</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8BnzsvTdKkj1KmDoYDt-ljSNurdm7tTDJE_3ozNnw6-PH97o6PkGsGI8Ygv1tMxqMUmB6lWoCE9IQMmJQqyXOhT8kAUqUTAJGdkwvvVwBMSCYHZDnbhnbT_mJNp0WRzNG16GnRb7bYeRti_IK-72wX6DOG79590qZ3dB5saGPsfuhb63CN3tPxKy0-rHtH5y_JWWPXHq-Oc0iWD-NF8ZRMZ4-T4n6aVJzrkDRYiczaWoOyyGrLudI1CClTywGshry0yFlVpSgrkTe2yjXUJSs5ljyL-JDcHvZuXf-1Qx_Mqt-5Lp40KZNMZDITOlJwoCrXe--wMVvXbuLvhoHZyzNRntnLM0d5sXJzqLSI-I9rrkApxf8A8zprOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151465648</pqid></control><display><type>article</type><title>Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers</title><source>IEEE Electronic Library (IEL)</source><creator>Ramezani, Ali ; Farhangi, Shahrokh ; Iman-Eini, Hossein ; Farhangi, Babak ; Rahimi, Ramin ; Moradi, Gholam Reza</creator><creatorcontrib>Ramezani, Ali ; Farhangi, Shahrokh ; Iman-Eini, Hossein ; Farhangi, Babak ; Rahimi, Ramin ; Moradi, Gholam Reza</creatorcontrib><description>In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventional methods only consider the full-load condition to design the resonant network; in contrast, the proposed method employs a time-weighted average efficiency for different coupling conditions to achieve high efficiency over a wide load range including light-load and no-load operation. The resonant network is tuned to realize zero voltage switching for the primary side inverter. Moreover, a finite-element analysis is performed to calculate self- and mutual inductances as well as core losses for magnetic couplers. In order to validate the feasibility of the proposed design, a 1 kW/85 kHz prototype with circular magnetic couplers is implemented. According to simulations and experiments, flat profiles for both efficiency and output voltage against output power variations are achieved. Experimental results demonstrate a 94.8% peak efficiency for the full-load operation.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2840502</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Core loss ; Couplers ; Couplings ; Efficiency ; Electric potential ; Electric vehicle charging ; Electric vehicles ; Electronic devices ; Electronic equipment ; Finite element method ; Magnetic cores ; Magnetic flux ; Magnetic resonance ; Mathematical analysis ; Optimization ; Power efficiency ; resonant converter ; stationary charging ; Wireless networks ; wireless power transfer (WPT) ; Zero voltage switching ; zero voltage switching (ZVS)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-04, Vol.66 (4), p.2756-2765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-fec46aad807ae1da3378d04552a300a809bae31cc2e5c49fac980db1b3eb36a33</citedby><cites>FETCH-LOGICAL-c338t-fec46aad807ae1da3378d04552a300a809bae31cc2e5c49fac980db1b3eb36a33</cites><orcidid>0000-0003-0147-1579 ; 0000-0003-0253-9811 ; 0000-0003-1118-2877 ; 0000-0002-2595-9045 ; 0000-0003-1987-3963 ; 0000-0001-8790-6152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8370777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8370777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramezani, Ali</creatorcontrib><creatorcontrib>Farhangi, Shahrokh</creatorcontrib><creatorcontrib>Iman-Eini, Hossein</creatorcontrib><creatorcontrib>Farhangi, Babak</creatorcontrib><creatorcontrib>Rahimi, Ramin</creatorcontrib><creatorcontrib>Moradi, Gholam Reza</creatorcontrib><title>Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventional methods only consider the full-load condition to design the resonant network; in contrast, the proposed method employs a time-weighted average efficiency for different coupling conditions to achieve high efficiency over a wide load range including light-load and no-load operation. The resonant network is tuned to realize zero voltage switching for the primary side inverter. Moreover, a finite-element analysis is performed to calculate self- and mutual inductances as well as core losses for magnetic couplers. In order to validate the feasibility of the proposed design, a 1 kW/85 kHz prototype with circular magnetic couplers is implemented. According to simulations and experiments, flat profiles for both efficiency and output voltage against output power variations are achieved. Experimental results demonstrate a 94.8% peak efficiency for the full-load operation.</description><subject>Coils</subject><subject>Core loss</subject><subject>Couplers</subject><subject>Couplings</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Finite element method</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic resonance</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Power efficiency</subject><subject>resonant converter</subject><subject>stationary charging</subject><subject>Wireless networks</subject><subject>wireless power transfer (WPT)</subject><subject>Zero voltage switching</subject><subject>zero voltage switching (ZVS)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOKfvgi8BnzsvTdKkj1KmDoYDt-ljSNurdm7tTDJE_3ozNnw6-PH97o6PkGsGI8Ygv1tMxqMUmB6lWoCE9IQMmJQqyXOhT8kAUqUTAJGdkwvvVwBMSCYHZDnbhnbT_mJNp0WRzNG16GnRb7bYeRti_IK-72wX6DOG79590qZ3dB5saGPsfuhb63CN3tPxKy0-rHtH5y_JWWPXHq-Oc0iWD-NF8ZRMZ4-T4n6aVJzrkDRYiczaWoOyyGrLudI1CClTywGshry0yFlVpSgrkTe2yjXUJSs5ljyL-JDcHvZuXf-1Qx_Mqt-5Lp40KZNMZDITOlJwoCrXe--wMVvXbuLvhoHZyzNRntnLM0d5sXJzqLSI-I9rrkApxf8A8zprOA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ramezani, Ali</creator><creator>Farhangi, Shahrokh</creator><creator>Iman-Eini, Hossein</creator><creator>Farhangi, Babak</creator><creator>Rahimi, Ramin</creator><creator>Moradi, Gholam Reza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0147-1579</orcidid><orcidid>https://orcid.org/0000-0003-0253-9811</orcidid><orcidid>https://orcid.org/0000-0003-1118-2877</orcidid><orcidid>https://orcid.org/0000-0002-2595-9045</orcidid><orcidid>https://orcid.org/0000-0003-1987-3963</orcidid><orcidid>https://orcid.org/0000-0001-8790-6152</orcidid></search><sort><creationdate>20190401</creationdate><title>Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers</title><author>Ramezani, Ali ; Farhangi, Shahrokh ; Iman-Eini, Hossein ; Farhangi, Babak ; Rahimi, Ramin ; Moradi, Gholam Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-fec46aad807ae1da3378d04552a300a809bae31cc2e5c49fac980db1b3eb36a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coils</topic><topic>Core loss</topic><topic>Couplers</topic><topic>Couplings</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Finite element method</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic resonance</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Power efficiency</topic><topic>resonant converter</topic><topic>stationary charging</topic><topic>Wireless networks</topic><topic>wireless power transfer (WPT)</topic><topic>Zero voltage switching</topic><topic>zero voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramezani, Ali</creatorcontrib><creatorcontrib>Farhangi, Shahrokh</creatorcontrib><creatorcontrib>Iman-Eini, Hossein</creatorcontrib><creatorcontrib>Farhangi, Babak</creatorcontrib><creatorcontrib>Rahimi, Ramin</creatorcontrib><creatorcontrib>Moradi, Gholam Reza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramezani, Ali</au><au>Farhangi, Shahrokh</au><au>Iman-Eini, Hossein</au><au>Farhangi, Babak</au><au>Rahimi, Ramin</au><au>Moradi, Gholam Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>66</volume><issue>4</issue><spage>2756</spage><epage>2765</epage><pages>2756-2765</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventional methods only consider the full-load condition to design the resonant network; in contrast, the proposed method employs a time-weighted average efficiency for different coupling conditions to achieve high efficiency over a wide load range including light-load and no-load operation. The resonant network is tuned to realize zero voltage switching for the primary side inverter. Moreover, a finite-element analysis is performed to calculate self- and mutual inductances as well as core losses for magnetic couplers. In order to validate the feasibility of the proposed design, a 1 kW/85 kHz prototype with circular magnetic couplers is implemented. According to simulations and experiments, flat profiles for both efficiency and output voltage against output power variations are achieved. Experimental results demonstrate a 94.8% peak efficiency for the full-load operation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2840502</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0147-1579</orcidid><orcidid>https://orcid.org/0000-0003-0253-9811</orcidid><orcidid>https://orcid.org/0000-0003-1118-2877</orcidid><orcidid>https://orcid.org/0000-0002-2595-9045</orcidid><orcidid>https://orcid.org/0000-0003-1987-3963</orcidid><orcidid>https://orcid.org/0000-0001-8790-6152</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2019-04, Vol.66 (4), p.2756-2765 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2151465648 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Core loss Couplers Couplings Efficiency Electric potential Electric vehicle charging Electric vehicles Electronic devices Electronic equipment Finite element method Magnetic cores Magnetic flux Magnetic resonance Mathematical analysis Optimization Power efficiency resonant converter stationary charging Wireless networks wireless power transfer (WPT) Zero voltage switching zero voltage switching (ZVS) |
title | Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20LCC-Series%20Compensated%20Resonant%20Network%20for%20Stationary%20Wireless%20EV%20Chargers&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Ramezani,%20Ali&rft.date=2019-04-01&rft.volume=66&rft.issue=4&rft.spage=2756&rft.epage=2765&rft.pages=2756-2765&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2840502&rft_dat=%3Cproquest_RIE%3E2151465648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151465648&rft_id=info:pmid/&rft_ieee_id=8370777&rfr_iscdi=true |