Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers
In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventiona...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2019-04, Vol.66 (4), p.2756-2765 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an optimal design procedure for LCC-series compensation network is proposed for a stationary wireless electric vehicle charger. The main focus of this paper is to optimize the resonant network suitable for a wide range of operation from no-load to full-power operation. The conventional methods only consider the full-load condition to design the resonant network; in contrast, the proposed method employs a time-weighted average efficiency for different coupling conditions to achieve high efficiency over a wide load range including light-load and no-load operation. The resonant network is tuned to realize zero voltage switching for the primary side inverter. Moreover, a finite-element analysis is performed to calculate self- and mutual inductances as well as core losses for magnetic couplers. In order to validate the feasibility of the proposed design, a 1 kW/85 kHz prototype with circular magnetic couplers is implemented. According to simulations and experiments, flat profiles for both efficiency and output voltage against output power variations are achieved. Experimental results demonstrate a 94.8% peak efficiency for the full-load operation. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2018.2840502 |