Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic
We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechan...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-11, Vol.98 (19), Article 195144 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Physical review. B |
container_volume | 98 |
creator | Valmianski, I. Wang, P. Y. Wang, S. Ramirez, Juan Gabriel Guénon, S. Schuller, Ivan K. |
description | We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechanism, suppressed in nanoscale devices, explains the current-driven insulator-to-metal phase transition (IMT). We find that the relative contribution of PE and ET effects is dictated by thermal coupling and resistivity, a discovery which disambiguates a long-standing controversy surrounding the physical nature of the current-driven IMT in vanadium oxides. Furthermore, we show that the electrothermally driven IMT occurs through a nanoscopic surface-confined filament. This nanoconfined filament has a very large thermal gradient, thus generating a large Seebeck-effect electric field. |
doi_str_mv | 10.1103/PhysRevB.98.195144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151200989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151200989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ca3f5fc47981ec53761edd34bcef669f4b7524c82333d997568a5ecc4227e1463</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsNT-AVcDrlPnO3nutGgVChWp62E6ebGpbabOJNH-eytVV_cuDvfCIeSSszHnTF4_r_bpBfu7MRRjDpordUIGQhnIAAyc_nfNzskopTVjjBsGOYMBWcxj_VY3NFS0XSH1XYzYtFkZ6x4buozo3svw2dAD0rvGlXW3peGrLjHd0MUK49ZtaI8xdYniBn0bQ1P7C3JWuU3C0W8OyevD_WLymM3m06fJ7SzzSqo2805WuvIqh4Kj1zI3HMtSqqXHyhio1DLXQvlCSClLgFybwmn0XgmRI1dGDsnVcXcXw0eHqbXr0MXmcGkF11wwBgUcKHGkfAwpRazsLtZbF_eWM_sj0P4JtFDYo0D5DaMQZeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151200989</pqid></control><display><type>article</type><title>Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic</title><source>American Physical Society Journals</source><creator>Valmianski, I. ; Wang, P. Y. ; Wang, S. ; Ramirez, Juan Gabriel ; Guénon, S. ; Schuller, Ivan K.</creator><creatorcontrib>Valmianski, I. ; Wang, P. Y. ; Wang, S. ; Ramirez, Juan Gabriel ; Guénon, S. ; Schuller, Ivan K.</creatorcontrib><description>We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechanism, suppressed in nanoscale devices, explains the current-driven insulator-to-metal phase transition (IMT). We find that the relative contribution of PE and ET effects is dictated by thermal coupling and resistivity, a discovery which disambiguates a long-standing controversy surrounding the physical nature of the current-driven IMT in vanadium oxides. Furthermore, we show that the electrothermally driven IMT occurs through a nanoscopic surface-confined filament. This nanoconfined filament has a very large thermal gradient, thus generating a large Seebeck-effect electric field.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.195144</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Electric fields ; Electrical faults ; Nanotechnology devices ; Phase transitions ; Thermal coupling ; Vanadium dioxide ; Vanadium oxides</subject><ispartof>Physical review. B, 2018-11, Vol.98 (19), Article 195144</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ca3f5fc47981ec53761edd34bcef669f4b7524c82333d997568a5ecc4227e1463</citedby><cites>FETCH-LOGICAL-c434t-ca3f5fc47981ec53761edd34bcef669f4b7524c82333d997568a5ecc4227e1463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Valmianski, I.</creatorcontrib><creatorcontrib>Wang, P. Y.</creatorcontrib><creatorcontrib>Wang, S.</creatorcontrib><creatorcontrib>Ramirez, Juan Gabriel</creatorcontrib><creatorcontrib>Guénon, S.</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><title>Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic</title><title>Physical review. B</title><description>We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechanism, suppressed in nanoscale devices, explains the current-driven insulator-to-metal phase transition (IMT). We find that the relative contribution of PE and ET effects is dictated by thermal coupling and resistivity, a discovery which disambiguates a long-standing controversy surrounding the physical nature of the current-driven IMT in vanadium oxides. Furthermore, we show that the electrothermally driven IMT occurs through a nanoscopic surface-confined filament. This nanoconfined filament has a very large thermal gradient, thus generating a large Seebeck-effect electric field.</description><subject>Electric fields</subject><subject>Electrical faults</subject><subject>Nanotechnology devices</subject><subject>Phase transitions</subject><subject>Thermal coupling</subject><subject>Vanadium dioxide</subject><subject>Vanadium oxides</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRsNT-AVcDrlPnO3nutGgVChWp62E6ebGpbabOJNH-eytVV_cuDvfCIeSSszHnTF4_r_bpBfu7MRRjDpordUIGQhnIAAyc_nfNzskopTVjjBsGOYMBWcxj_VY3NFS0XSH1XYzYtFkZ6x4buozo3svw2dAD0rvGlXW3peGrLjHd0MUK49ZtaI8xdYniBn0bQ1P7C3JWuU3C0W8OyevD_WLymM3m06fJ7SzzSqo2805WuvIqh4Kj1zI3HMtSqqXHyhio1DLXQvlCSClLgFybwmn0XgmRI1dGDsnVcXcXw0eHqbXr0MXmcGkF11wwBgUcKHGkfAwpRazsLtZbF_eWM_sj0P4JtFDYo0D5DaMQZeU</recordid><startdate>20181130</startdate><enddate>20181130</enddate><creator>Valmianski, I.</creator><creator>Wang, P. Y.</creator><creator>Wang, S.</creator><creator>Ramirez, Juan Gabriel</creator><creator>Guénon, S.</creator><creator>Schuller, Ivan K.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181130</creationdate><title>Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic</title><author>Valmianski, I. ; Wang, P. Y. ; Wang, S. ; Ramirez, Juan Gabriel ; Guénon, S. ; Schuller, Ivan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ca3f5fc47981ec53761edd34bcef669f4b7524c82333d997568a5ecc4227e1463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electric fields</topic><topic>Electrical faults</topic><topic>Nanotechnology devices</topic><topic>Phase transitions</topic><topic>Thermal coupling</topic><topic>Vanadium dioxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valmianski, I.</creatorcontrib><creatorcontrib>Wang, P. Y.</creatorcontrib><creatorcontrib>Wang, S.</creatorcontrib><creatorcontrib>Ramirez, Juan Gabriel</creatorcontrib><creatorcontrib>Guénon, S.</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valmianski, I.</au><au>Wang, P. Y.</au><au>Wang, S.</au><au>Ramirez, Juan Gabriel</au><au>Guénon, S.</au><au>Schuller, Ivan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic</atitle><jtitle>Physical review. B</jtitle><date>2018-11-30</date><risdate>2018</risdate><volume>98</volume><issue>19</issue><artnum>195144</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechanism, suppressed in nanoscale devices, explains the current-driven insulator-to-metal phase transition (IMT). We find that the relative contribution of PE and ET effects is dictated by thermal coupling and resistivity, a discovery which disambiguates a long-standing controversy surrounding the physical nature of the current-driven IMT in vanadium oxides. Furthermore, we show that the electrothermally driven IMT occurs through a nanoscopic surface-confined filament. This nanoconfined filament has a very large thermal gradient, thus generating a large Seebeck-effect electric field.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.195144</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-11, Vol.98 (19), Article 195144 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2151200989 |
source | American Physical Society Journals |
subjects | Electric fields Electrical faults Nanotechnology devices Phase transitions Thermal coupling Vanadium dioxide Vanadium oxides |
title | Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20the%20current-driven%20breakdown%20in%20vanadium%20oxides:%20Thermal%20versus%20electronic&rft.jtitle=Physical%20review.%20B&rft.au=Valmianski,%20I.&rft.date=2018-11-30&rft.volume=98&rft.issue=19&rft.artnum=195144&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.195144&rft_dat=%3Cproquest_cross%3E2151200989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151200989&rft_id=info:pmid/&rfr_iscdi=true |