Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic

We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-11, Vol.98 (19), Article 195144
Hauptverfasser: Valmianski, I., Wang, P. Y., Wang, S., Ramirez, Juan Gabriel, Guénon, S., Schuller, Ivan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the existence of two competing mechanisms in the current-driven electrical breakdown of vanadium sesquioxide (V2O3) and vanadium dioxide (VO2) nanodevices. Our experiments and simulations show that the competition between a purely electronic (PE) mechanism and an electrothermal (ET) mechanism, suppressed in nanoscale devices, explains the current-driven insulator-to-metal phase transition (IMT). We find that the relative contribution of PE and ET effects is dictated by thermal coupling and resistivity, a discovery which disambiguates a long-standing controversy surrounding the physical nature of the current-driven IMT in vanadium oxides. Furthermore, we show that the electrothermally driven IMT occurs through a nanoscopic surface-confined filament. This nanoconfined filament has a very large thermal gradient, thus generating a large Seebeck-effect electric field.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.98.195144