Covalency-driven collapse of strong spin-orbit coupling in face-sharing iridium octahedra

We report ab initio density functional theory calculation and Raman scattering results to explore the electronic structure of Ba5CuIr3O12 single crystals. This insulating iridate, consisting of face-sharing IrO6 octahedra forming quasi-one-dimensional chains, cannot be described by the local jeff=1/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-11, Vol.98 (20), p.201105(R), Article 201105
Hauptverfasser: Ye, Mai, Kim, Heung-Sik, Kim, Jae-Wook, Won, Choong-Jae, Haule, Kristjan, Vanderbilt, David, Cheong, Sang-Wook, Blumberg, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report ab initio density functional theory calculation and Raman scattering results to explore the electronic structure of Ba5CuIr3O12 single crystals. This insulating iridate, consisting of face-sharing IrO6 octahedra forming quasi-one-dimensional chains, cannot be described by the local jeff=1/2 moment picture commonly adopted for discussing the electronic and magnetic properties of iridate compounds with IrO6 octahedra. The shorter Ir-Ir distance in the face-sharing geometry, compared to corner- or edge-sharing structures, leads to strong covalency between neighboring Ir. Then, this strong covalency results in the formation of molecular orbitals (MOs) at each Ir trimer as the low-energy electronic degree of freedom. The theoretically predicted three-peak structure in the joint density of states, a distinct indication of deviation from the jeff=1/2 picture, is verified by observing the three-peak structure in the electronic excitation spectrum by Raman scattering.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.98.201105